Displaying 61 – 80 of 131

Showing per page

Some results envolving the concepts of moment generating function and affinity between distribution functions. Extension for r k-dimensional normal distribution functions.

Antonio Dorival Campos (1999)

Qüestiió

We present a function ρ (F1, F2, t) which contains Matusita's affinity and expresses the affinity between moment generating functions. An interesting results is expressed through decomposition of this affinity ρ (F1, F2, t) when the functions considered are k-dimensional normal distributions. The same decomposition remains true for other families of distribution functions. Generalizations of these results are also presented.

Some stochastic comparison results for series and parallel systems with heterogeneous Pareto type components

Lakshmi Kanta Patra, Suchandan Kayal, Phalguni Nanda (2018)

Applications of Mathematics

We focus on stochastic comparisons of lifetimes of series and parallel systems consisting of independent and heterogeneous new Pareto type components. Sufficient conditions involving majorization type partial orders are provided to obtain stochastic comparisons in terms of various magnitude and dispersive orderings which include usual stochastic order, hazard rate order, dispersive order and right spread order. The usual stochastic order of lifetimes of series systems with possibly different scale...

Sparsity in penalized empirical risk minimization

Vladimir Koltchinskii (2009)

Annales de l'I.H.P. Probabilités et statistiques

Let (X, Y) be a random couple in S×T with unknown distribution P. Let (X1, Y1), …, (Xn, Yn) be i.i.d. copies of (X, Y), Pn being their empirical distribution. Let h1, …, hN:S↦[−1, 1] be a dictionary consisting of N functions. For λ∈ℝN, denote fλ:=∑j=1Nλjhj. Let ℓ:T×ℝ↦ℝ be a given loss function, which is convex with respect to the second variable. Denote (ℓ•f)(x, y):=ℓ(y; f(x)). We study the following penalized empirical risk minimization problem λ ^ ε : = argmin λ N P n ( f λ ) + ε λ p p , which is an empirical version of the problem λ ε : = argmin λ N P ( f λ ) + ε λ p p (hereɛ≥0...

Spectral gap and convex concentration inequalities for birth–death processes

Wei Liu, Yutao Ma (2009)

Annales de l'I.H.P. Probabilités et statistiques

In this paper, we consider a birth–death process with generator and reversible invariant probabilityπ. Given an increasing function ρ and the associated Lipschitz norm ‖⋅‖Lip(ρ), we find an explicit formula for ( - ) - 1 Lip ( ρ ) . As a typical application, with spectral theory, we revisit one variational formula of M. F. Chen for the spectral gap of inL2(π). Moreover, by Lyons–Zheng’s forward-backward martingale decomposition theorem, we get convex concentration inequalities for additive functionals of birth–death...

Stability estimates of generalized geometric sums and their applications

Evgueni I. Gordienko (2004)

Kybernetika

The upper bounds of the uniform distance ρ k = 1 ν X k , k = 1 ν X ˜ k between two sums of a random number ν of independent random variables are given. The application of these bounds is illustrated by stability (continuity) estimating in models in queueing and risk theory.

Stability of characterizations of distribution functions using failure rate functions

Maia Koicheva, Edward Omey (1990)

Aplikace matematiky

Let λ denote the failure rate function of the d , f . F and let λ 1 denote the failure rate function of the mean residual life distribution. In this paper we characterize the distribution functions F for which λ 1 = c λ and we estimate F when it is only known that λ 1 / λ or λ 1 - c λ is bounded.

Stability of precise Laplace's method under approximations; Applications

A. Guionnet (2010)

ESAIM: Probability and Statistics

We study the fluctuations around non degenerate attractors of the empirical measure under mean field Gibbs measures. We prove that a mild change of the densities of these measures does not affect the central limit theorems. We apply this result to generalize the assumptions of [3] and [12] on the densities of the Gibbs measures to get precise Laplace estimates.

Standard and nonstandard representability of positive uncertainty orderings

Andrea Capotorti, Giulianella Coletti, Barbara Vantaggi (2014)

Kybernetika

Axioms are given for positive comparative probabilities and plausibilities defined either on Boolean algebras or on arbitrary sets of events. These axioms allow to characterize binary relations representable by either standard or nonstandard measures (i. e. taking values either on the real field or on a hyperreal field). We also study relations between conditional events induced by preferences on conditional acts.

Currently displaying 61 – 80 of 131