Displaying 41 – 60 of 65

Showing per page

Limit theorems for some functionals with heavy tails of a discrete time Markov chain

Patrick Cattiaux, Mawaki Manou-Abi (2014)

ESAIM: Probability and Statistics

Consider an irreducible, aperiodic and positive recurrent discrete time Markov chain (Xn,n ≥ 0) with invariant distribution μ. We shall investigate the long time behaviour of some functionals of the chain, in particular the additive functional S n = i = 1 n f ( X i ) S n = ∑ i = 1 n f ( X i ) for a possibly non square integrable functionf. To this end we shall link ergodic properties of the chain to mixing properties, extending known results in the continuous time case. We will then use existing results of convergence...

Limit theorems for stationary Markov processes with L2-spectral gap

Déborah Ferré, Loïc Hervé, James Ledoux (2012)

Annales de l'I.H.P. Probabilités et statistiques

Let ( X t , Y t ) t 𝕋 be a discrete or continuous-time Markov process with state space 𝕏 × d where 𝕏 is an arbitrary measurable set. Its transition semigroup is assumed to be additive with respect to the second component, i.e. ( X t , Y t ) t 𝕋 is assumed to be a Markov additive process. In particular, this implies that the first component ( X t ) t 𝕋 is also a Markov process. Markov random walks or additive functionals of a Markov process are special instances of Markov additive processes. In this paper, the process ( Y t ) t 𝕋 is shown to satisfy the...

Limit theorems for stochastic recursions with Markov dependent coefficients

Dariusz Buraczewski, Małgorzata Letachowicz (2012)

Colloquium Mathematicae

We consider the stochastic recursion X = A X n - 1 + B for Markov dependent coefficients (Aₙ,Bₙ) ∈ ℝ⁺ × ℝ. We prove the central limit theorem, the local limit theorem and the renewal theorem for the partial sums Sₙ = X₁+ ⋯ + Xₙ.

Limit theorems for U-statistics indexed by a one dimensional random walk

Nadine Guillotin-Plantard, Véronique Ladret (2005)

ESAIM: Probability and Statistics

Let ( S n ) n 0 be a -random walk and ( ξ x ) x be a sequence of independent and identically distributed -valued random variables, independent of the random walk. Let h be a measurable, symmetric function defined on 2 with values in . We study the weak convergence of the sequence 𝒰 n , n , with values in D [ 0 , 1 ] the set of right continuous real-valued functions with left limits, defined by i , j = 0 [ n t ] h ( ξ S i , ξ S j ) , t [ 0 , 1 ] . Statistical applications are presented, in particular we prove a strong law of large numbers for U -statistics indexed by a one-dimensional...

Limit theorems for U-statistics indexed by a one dimensional random walk

Nadine Guillotin-Plantard, Véronique Ladret (2010)

ESAIM: Probability and Statistics

Let (Sn)n≥0 be a -random walk and ( ξ x ) x be a sequence of independent and identically distributed -valued random variables, independent of the random walk. Let h be a measurable, symmetric function defined on 2 with values in . We study the weak convergence of the sequence 𝒰 n , n , with values in D[0,1] the set of right continuous real-valued functions with left limits, defined by i , j = 0 [ n t ] h ( ξ S i , ξ S j ) , t [ 0 , 1 ] . Statistical applications are presented, in particular we prove a strong law of large numbers for U-statistics indexed by...

Limit theorems in free probability theory II

Gennadii Chistyakov, Friedrich Götze (2008)

Open Mathematics

Based on an analytical approach to the definition of multiplicative free convolution on probability measures on the nonnegative line ℝ+ and on the unit circle 𝕋 we prove analogs of limit theorems for nonidentically distributed random variables in classical Probability Theory.

Limiting spectral distribution of XX' matrices

Arup Bose, Sreela Gangopadhyay, Arnab Sen (2010)

Annales de l'I.H.P. Probabilités et statistiques

The methods to establish the limiting spectral distribution (LSD) of large dimensional random matrices includes the well-known moment method which invokes the trace formula. Its success has been demonstrated in several types of matrices such as the Wigner matrix and the sample covariance matrix. In a recent article Bryc, Dembo and Jiang [Ann. Probab.34 (2006) 1–38] establish the LSD for random Toeplitz and Hankel matrices using the moment method. They perform the necessary counting of terms in the...

Linear comparative calibration with correlated measurements

Gejza Wimmer, Viktor Witkovský (2007)

Kybernetika

The paper deals with the linear comparative calibration problem, i. e. the situation when both variables are subject to errors. Considered is a quite general model which allows to include possibly correlated data (measurements). From statistical point of view the model could be represented by the linear errors-in-variables (EIV) model. We suggest an iterative algorithm for estimation the parameters of the analysis function (inverse of the calibration line) and we solve the problem of deriving the...

Linear rescaling of the stochastic process

Petr Lachout (1992)

Commentationes Mathematicae Universitatis Carolinae

Discussion on the limits in distribution of processes Y under joint rescaling of space and time is presented in this paper. The results due to Lamperti (1962), Weissman (1975), Hudson Mason (1982) and Laha Rohatgi (1982) are improved here.

Currently displaying 41 – 60 of 65