The search session has expired. Please query the service again.
We describe the limit measures for some class of deformations of the free convolution, introduced by A. D. Krystek and Ł. J. Wojakowski. In particular, we provide a counterexample to a conjecture from their paper.
We find limit shapes for a family of multiplicative measures on the set of partitions, induced by exponential generating functions with expansive parameters, ak∼Ckp−1, k→∞, p>0, where C is a positive constant. The measures considered are associated with the generalized Maxwell–Boltzmann models in statistical mechanics, reversible coagulation–fragmentation processes and combinatorial structures, known as assemblies. We prove a central limit theorem for fluctuations of a properly scaled partition...
Let S=(Sk)k≥0 be a random walk on ℤ and ξ=(ξi)i∈ℤ a stationary random sequence of centered random variables, independent of S. We consider a random walk in random scenery that is the sequence of random variables (Un)n≥0, where Un=∑k=0nξSk, n∈ℕ. Under a weak dependence assumption on the scenery ξ we prove a functional limit theorem generalizing Kesten and Spitzer’s [Z. Wahrsch. Verw. Gebiete50 (1979) 5–25] theorem.
The limit behaviour of the extreme order statistics arising from n two-dimensional independent and non-identically distributed random vectors is investigated. Necessary and sufficient conditions for the weak convergence of the distribution function (d.f.) of the vector of extremes, as well as the form of the limit d.f.'s, are obtained. Moreover, conditions for the components of the vector of extremes to be asymptotically independent are studied.
Observations are made on a point process in in a window of volume . The observation, or ‘score’ at a point , here denoted , is a function of the points within a random distance of . When the input is a Poisson or binomial point process, the large limit theory for the total score , when properly scaled and centered, is well understood. In this paper we establish general laws of large numbers, variance asymptotics, and central limit theorems for the total score for Gibbsian input ....
We have random number of independent diffusion processes with absorption on boundaries in some region at initial time t = 0. The initial numbers and positions of processes in region is defined by the Poisson random measure. It is required to estimate the number of the unabsorbed processes for the fixed time τ > 0. The Poisson random measure depends on τ and τ → ∞.
Random walks in random scenery are processes defined by , where and are two independent sequences of i.i.d. random variables with values in and respectively. We suppose that the distributions of and belong to the normal basin of attraction of stable distribution of index and . When and , a functional limit theorem has been established in (Z. Wahrsch. Verw. Gebiete50 (1979) 5–25) and a local limit theorem in (Ann. Probab.To appear). In this paper, we establish the convergence in...
This work is supported by Bulgarian NFSI, grant No. MM–704/97The regenerative excursion process Z(t), t = 0, 1, 2, . . . is
constructed by two independent sequences X = {Xi , i ≥ 1} and Z =
{Ti , (Zi (t), 0 ≤ t < Ti ), i ≥ 1}.
For the embedded alternating renewal process, with interarrival times Xi
– the time for the installation and Ti – the time for the work, are proved
some limit theorems for the spent worktime and the residual worktime, when
at least one of the means of Xi and Ti is infinite.
...
Currently displaying 21 –
40 of
65