On the Argmin-sets of stochastic processes and their distributional convergence in Fell-type-topologies
Let be the collection of all -optimal solutions for a stochastic process with locally bounded trajectories defined on a topological space. For sequences of such stochastic processes and of nonnegative random variables we give sufficient conditions for the (closed) random sets to converge in distribution with respect to the Fell-topology and to the coarser Missing-topology.