The search session has expired. Please query the service again.
Displaying 21 –
40 of
154
Under regularity assumptions, we establish a sharp large
deviation principle for Hermitian quadratic forms of
stationary Gaussian processes. Our result is similar to
the well-known Bahadur-Rao theorem [2] on the sample
mean. We also provide several examples of application
such as the sharp large deviation properties of
the Neyman-Pearson likelihood ratio test, of the sum of squares,
of the Yule-Walker
estimator of the parameter of a stable autoregressive Gaussian process,
and finally of the empirical...
Motivated by the central limit problem for algebraic probability spaces arising from the Haagerup states on the free group with countably infinite generators, we introduce a new notion of statistical independence in terms of inequalities rather than of usual algebraic identities. In the case of the Haagerup states the role of the Gaussian law is played by the Ullman distribution. The limit process is realized explicitly on the finite temperature Boltzmannian Fock space. Furthermore, a functional...
We consider models of random walk in uniformly elliptic i.i.d. random environment in dimension greater than or equal to 4, satisfying a condition slightly weaker than the ballisticity condition . We show that for every and large enough, the annealed probability of linear slowdown is bounded from above by . This bound almost matches the known lower bound of , and significantly improves previously known upper bounds. As a corollary we provide almost sharp estimates for the quenched probability...
This paper is concerned with the small time behaviour of a Lévy process . In particular, we investigate thestabilitiesof the times, and , at which , started with , first leaves the space-time regions (one-sided exit), or (two-sided exit), , as . Thus essentially we determine whether or not these passage times behave like deterministic functions in the sense of different modes of convergence; specifically convergence in probability, almost surely and in . In many instances these are...
We investigate the small deviations under various norms for stable processes defined by the convolution of a smooth function with a real SαS Lévy process. We show that the small ball exponent is uniquely determined by the norm and by the behaviour of f at zero, which extends the results of
Lifshits and Simon, Ann. Inst. H. Poincaré Probab. Statist.41 (2005) 725–752
where this was proved for f being a power function (Riemann-Liouville processes). In the Gaussian case, the same generality as...
We derive logarithmic asymptotics of probabilities of small deviations for iterated processes in the space of trajectories. We find conditions under which these asymptotics coincide with those of processes generating iterated processes. When these conditions fail the asymptotics are quite different.
Branching Processes in Random Environment (BPREs) are the generalization of Galton–Watson processes where in each generation the reproduction law is picked randomly in an i.i.d. manner. In the supercritical case, the process survives with positive probability and then almost surely grows geometrically. This paper focuses on rare events when the process takes positive but small values for large times. We describe the asymptotic behavior of , as . More precisely, we characterize the exponential...
We consider a large class of piecewise expanding maps T of [0, 1] with a neutral fixed point, and their associated Markov chains Yi whose transition kernel is the Perron–Frobenius operator of T with respect to the absolutely continuous invariant probability measure. We give a large class of unbounded functions f for which the partial sums of f○Ti satisfy both a central limit theorem and a bounded law of the iterated logarithm. For the same class, we prove that the partial sums of f(Yi) satisfy a...
After recalling previous work on probability generating functions for real valued random variables we extend to these random variables uniform laws of large numbers and functional limit theorem for the empirical probability generating function. We present an application to the study of continuous laws, namely, estimation of parameters of Gaussian, gamma and uniform laws by means of a minimum contrast estimator that uses the empirical probability generating function of the sample. We test the procedure...
Currently displaying 21 –
40 of
154