Quadratic variations along irregular subdivisions for Gaussian processes.
Under some mild condition, a random walk in the plane is recurrent. In particular each trajectory is dense, and a natural question is how much time one needs to approach a given small neighbourhood of the origin. We address this question in the case of some extended dynamical systems similar to planar random walks, including ℤ2-extension of mixing subshifts of finite type. We define a pointwise recurrence rate and relate it to the dimension of the process, and establish a result of convergence in...
A noncommutative analogue of limit theorems in classical probability theory for distributions of canonical pairs of observables is considered. A complete description of all limit probability operators which are quantum counterparts of the classical infinitely divisible and semistable laws is obtained in the case when scalar norming is generalised to norming by 2 × 2 matrices.
We study a spatial branching model, where the underlying motion is d-dimensional (d≥1) brownian motion and the branching rate is affected by a random collection of reproduction suppressing sets dubbed mild obstacles. The main result of this paper is the quenched law of large numbers for the population for all d≥1. We also show that the branching brownian motion with mild obstacles spreads less quickly than ordinary branching brownian motion by giving an upper estimate on its speed. When the underlying...
We consider a nearest-neighbor, one-dimensional random walk {Xn}n≥0 in a random i.i.d. environment, in the regime where the walk is transient with speed vP>0 and there exists an s∈(1, 2) such that the annealed law of n−1/s(Xn−nvP) converges to a stable law of parameter s. Under the quenched law (i.e., conditioned on the environment), we show that no limit laws are possible. In particular we show that there exist sequences {tk} and {tk'} depending on the environment only, such that a quenched...