Page 1 Next

Displaying 1 – 20 of 68

Showing per page

Markov chains approximation of jump–diffusion stochastic master equations

Clément Pellegrini (2010)

Annales de l'I.H.P. Probabilités et statistiques

Quantum trajectories are solutions of stochastic differential equations obtained when describing the random phenomena associated to quantum continuous measurement of open quantum system. These equations, also called Belavkin equations or Stochastic Master equations, are usually of two different types: diffusive and of Poisson-type. In this article, we consider more advanced models in which jump–diffusion equations appear. These equations are obtained as a continuous time limit of martingale problems...

Matchings and the variance of Lipschitz functions

Franck Barthe, Neil O'Connell (2009)

ESAIM: Probability and Statistics

We are interested in the rate function of the moderate deviation principle for the two-sample matching problem. This is related to the determination of 1-Lipschitz functions with maximal variance. We give an exact solution for random variables which have normal law, or are uniformly distributed on the Euclidean ball.

Maximal inequalities and some convergence theorems for fuzzy random variables

Hamed Ahmadzade, Mohammad Amini, Seyed Mahmoud Taheri, Abolghasem Bozorgnia (2016)

Kybernetika

Some maximal inequalities for quadratic forms of independent and linearly negative quadrant dependent fuzzy random variables are established. Strong convergence of such quadratic forms are proved based on the martingale theory. A weak law of large numbers for linearly negative quadrant dependent fuzzy random variables is stated and proved.

Mean quadratic convergence of signed random measures

Pierre Jacob, Paulo Eduardo Oliveira (1991)

Commentationes Mathematicae Universitatis Carolinae

We consider signed Radon random measures on a separable, complete and locally compact metric space and study mean quadratic convergence with respect to vague topology on the space of measures. We prove sufficient conditions in order to obtain mean quadratic convergence. These results are based on some identification properties of signed Radon measures on the product space, also proved in this paper.

Medidas de centralización multidimensionales (ley fuerte de los grandes números).

Juan Antonio Cuesta Albertos (1984)

Trabajos de Estadística e Investigación Operativa

En este trabajo definimos una medida de centralización multidimensional para vectores aleatorios como el valor del parámetro para el que se alcanza el mínimo de las integrales de ciertas funciones. Estudiamos su relación con otras medidas de centralización multidimensionales conocidas. Finalizamos demostrando la Ley Fuerte de los Grandes Números, tanto para la medida de centralización definida como para la de dispersión asociada.

Currently displaying 1 – 20 of 68

Page 1 Next