Occupation laws for some time-nonhomogeneous Markov chains.
This note deals with the orthogonality between sequences of random variables. The main idea of the note is to apply the results on equidistant systems of points in a Hilbert space to the case of the space of real square integrable random variables. The main result gives a necessary and sufficient condition for a particular sequence of random variables (elements of which are taken from sets of equidistant elements of ) to be orthogonal to some other sequence in . The result obtained is interesting...
This work deals with a multivariate random coefficient autoregressive model (RCA) of the first order. A class of modified least-squares estimators of the parameters of the model, originally proposed by Schick for univariate first-order RCA models, is studied under more general conditions. Asymptotic behavior of such estimators is explored, and a lower bound for the asymptotic variance matrix of the estimator of the mean of random coefficient is established. Finite sample properties are demonstrated...
Mark Kac gave an example of a function f on the unit interval such that f cannot be written as f(t)=g(2t)-g(t) with an integrable function g, but the limiting variance of vanishes. It is proved that there is no measurable g such that f(t)=g(2t)-g(t). It is also proved that there is a non-measurable g which satisfies this equality.
Many statistical applications require establishing central limit theorems for sums/integrals or for quadratic forms , where Xt is a stationary process. A particularly important case is that of Appell polynomials h(Xt) = Pm(Xt), h(Xt,Xs) = Pm,n (Xt,Xs), since the “Appell expansion rank" determines typically the type of central limit theorem satisfied by the functionals ST(h), QT(h). We review and extend here to multidimensional indices, along lines conjectured in [F. Avram and M.S. Taqqu,...
We consider the variant of stochastic homogenization theory introduced in [X. Blanc, C. Le Bris and P.-L. Lions, C. R. Acad. Sci. Série I 343 (2006) 717–724.; X. Blanc, C. Le Bris and P.-L. Lions, J. Math. Pures Appl. 88 (2007) 34–63.]. The equation under consideration is a standard linear elliptic equation in divergence form, where the highly oscillatory coefficient is the composition of a periodic matrix with a stochastic diffeomorphism. The homogenized limit of this problem has been identified...
An exponential inequality for Choquet expectation is discussed. We also obtain a strong law of large numbers based on Choquet expectation. The main results of this paper improve some previous results obtained by many researchers.