Displaying 1061 – 1080 of 1890

Showing per page

On the Argmin-sets of stochastic processes and their distributional convergence in Fell-type-topologies

Dietmar Ferger (2011)

Kybernetika

Let ϵ - ( Z ) be the collection of all ϵ -optimal solutions for a stochastic process Z with locally bounded trajectories defined on a topological space. For sequences ( Z n ) of such stochastic processes and ( ϵ n ) of nonnegative random variables we give sufficient conditions for the (closed) random sets ϵ n - ( Z n ) to converge in distribution with respect to the Fell-topology and to the coarser Missing-topology.

On the asymptotic form of convex hulls of Gaussian random fields

Youri Davydov, Vygantas Paulauskas (2014)

Open Mathematics

We consider a centered Gaussian random field X = X t : t ∈ T with values in a Banach space 𝔹 defined on a parametric set T equal to ℝm or ℤm. It is supposed that the distribution of X t is independent of t. We consider the asymptotic behavior of closed convex hulls W n = convX t : t ∈ T n, where (T n) is an increasing sequence of subsets of T. We show that under some conditions of weak dependence for the random field under consideration and some sequence (b n)n≥1 with probability 1, (in the sense...

On the asymptotic variance in the central limit theorem for particle filters

Benjamin Favetto (2012)

ESAIM: Probability and Statistics

Particle filter algorithms approximate a sequence of distributions by a sequence of empirical measures generated by a population of simulated particles. In the context of Hidden Markov Models (HMM), they provide approximations of the distribution of optimal filters associated to these models. For a given set of observations, the behaviour of particle filters, as the number of particles tends to infinity, is asymptotically Gaussian, and the asymptotic variance in the central limit theorem depends...

On the asymptotic variance in the central limit theorem for particle filters

Benjamin Favetto (2012)

ESAIM: Probability and Statistics

Particle filter algorithms approximate a sequence of distributions by a sequence of empirical measures generated by a population of simulated particles. In the context of Hidden Markov Models (HMM), they provide approximations of the distribution of optimal filters associated to these models. For a given set of observations, the behaviour of particle filters, as the number of particles tends to infinity, is asymptotically Gaussian, and the asymptotic variance in the central limit theorem depends...

On the Borel-Cantelli Lemma and moments

S. Amghibech (2006)

Commentationes Mathematicae Universitatis Carolinae

We present some extensions of the Borel-Cantelli Lemma in terms of moments. Our result can be viewed as a new improvement to the Borel-Cantelli Lemma. Our proofs are based on the expansion of moments of some partial sums by using Stirling numbers. We also give a comment concerning the results of Petrov V.V., A generalization of the Borel-Cantelli Lemma, Statist. Probab. Lett. 67 (2004), no. 3, 233–239.

On the bounded laws of iterated logarithm in Banach space

Dianliang Deng (2010)

ESAIM: Probability and Statistics

In the present paper, by using the inequality due to Talagrand's isoperimetric method, several versions of the bounded law of iterated logarithm for a sequence of independent Banach space valued random variables are developed and the upper limits for the non-random constant are given.

On the bounded laws of iterated logarithm in Banach space

Dianliang Deng (2005)

ESAIM: Probability and Statistics

In the present paper, by using the inequality due to Talagrand’s isoperimetric method, several versions of the bounded law of iterated logarithm for a sequence of independent Banach space valued random variables are developed and the upper limits for the non-random constant are given.

On the Brunk-Chung type strong law of large numbers for sequences of blockwise m-dependent random variables

Le Van Thanh (2006)

ESAIM: Probability and Statistics

For a sequence of blockwise m-dependent random variables {Xn,n ≥ 1}, conditions are provided under which lim n ( i = 1 n X i ) / b n = 0 almost surely where {bn,n ≥ 1} is a sequence of positive constants. The results are new even when bn ≡ nr,r > 0. As special case, the Brunk-Chung strong law of large numbers is obtained for sequences of independent random variables. The current work also extends results of Móricz [Proc. Amer. Math. Soc.101 (1987) 709–715], and Gaposhkin [Teor. Veroyatnost. i Primenen. 39 (1994) 804–812]....

On the central limit theorem for some birth and death processes

Tymoteusz Chojecki (2011)

Annales UMCS, Mathematica

Suppose that {Xn, n ≥ 0} is a stationary Markov chain and V is a certain function on a phase space of the chain, called an observable. We say that the observable satisfies the central limit theorem (CLT) if [...] [...] converge in law to a normal random variable, as N → +∞. For a stationary Markov chain with the L2 spectral gap the theorem holds for all V such that V (X0) is centered and square integrable, see Gordin [7]. The purpose of this article is to characterize a family of observables V for...

On the central limit theorem on IFS-events.

Jozefina Petrovicová, Riecan Beloslav (2005)

Mathware and Soft Computing

A probability theory on IFS-events has been constructed in [3], and axiomatically characterized in [4]. Here using a general system of axioms it is shown that any probability on IFS-events can be decomposed onto two probabilities on a Lukasiewicz tribe, hence some known results from [5], [6] can be used also for IFS-sets. As an application of the approach a variant of Central limit theorem is presented.

Currently displaying 1061 – 1080 of 1890