Displaying 21 – 40 of 208

Showing per page

On asymptotic behaviors and convergence rates related to weak limiting distributions of geometric random sums

Tran Loc Hung, Phan Tri Kien, Nguyen Tan Nhut (2019)

Kybernetika

Geometric random sums arise in various applied problems like physics, biology, economics, risk processes, stochastic finance, queuing theory, reliability models, regenerative models, etc. Their asymptotic behaviors with convergence rates become a big subject of interest. The main purpose of this paper is to study the asymptotic behaviors of normalized geometric random sums of independent and identically distributed random variables via Gnedenko's Transfer Theorem. Moreover, using the Zolotarev probability...

On bilinear forms based on the resolvent of large random matrices

Walid Hachem, Philippe Loubaton, Jamal Najim, Pascal Vallet (2013)

Annales de l'I.H.P. Probabilités et statistiques

Consider a N × n non-centered matrix 𝛴 n with a separable variance profile: 𝛴 n = D n 1 / 2 X n D ˜ n 1 / 2 n + A n . Matrices D n and D ˜ n are non-negative deterministic diagonal, while matrix A n is deterministic, and X n is a random matrix with complex independent and identically distributed random variables, each with mean zero and variance one. Denote by Q n ( z ) the resolvent associated to 𝛴 n 𝛴 n * , i.e. Q n ( z ) = 𝛴 n 𝛴 n * - z I N - 1 . Given two sequences of deterministic vectors ( u n ) and ( v n ) with bounded Euclidean norms, we study the limiting behavior of the random bilinear form: u n * Q n ( z ) v n z - + , as the dimensions...

On complete moment convergence for weighted sums of AANA random variables

Haiwu Huang, Hanjun Zhang, Qingxia Zhang (2016)

Kybernetika

In this work, a complete moment convergence theorem is obtained for weighted sums of asymptotically almost negatively associated (AANA) random variables without assumption of identical distribution under some mild moment conditions. As an application, the complete convergence theorems for weighted sums of negatively associated (NA) and AANA random variables are obtained. The result not only generalizes the corresponding ones of Sung [13] and Huang et al. [8], but also improves them.

On complete moment convergence for weighted sums of negatively superadditive dependent random variables

Haiwu Huang, Xuewen Lu (2020)

Applications of Mathematics

In this work, the complete moment convergence and complete convergence for weighted sums of negatively superadditive dependent (NSD) random variables are studied, and some equivalent conditions of these strong convergences are established. These main results generalize and improve the corresponding theorems of Baum and Katz (1965) and Chow (1988) to weighted sums of NSD random variables without the assumption of identical distribution. As an application, a Marcinkiewicz-Zygmund-type strong law of...

Currently displaying 21 – 40 of 208