Page 1

Displaying 1 – 10 of 10

Showing per page

Markov chains approximation of jump–diffusion stochastic master equations

Clément Pellegrini (2010)

Annales de l'I.H.P. Probabilités et statistiques

Quantum trajectories are solutions of stochastic differential equations obtained when describing the random phenomena associated to quantum continuous measurement of open quantum system. These equations, also called Belavkin equations or Stochastic Master equations, are usually of two different types: diffusive and of Poisson-type. In this article, we consider more advanced models in which jump–diffusion equations appear. These equations are obtained as a continuous time limit of martingale problems...

Metric unconditionality and Fourier analysis

Stefan Neuwirth (1998)

Studia Mathematica

We investigate several aspects of almost 1-unconditionality. We characterize the metric unconditional approximation property (umap) in terms of “block unconditionality”. Then we focus on translation invariant subspaces L E p ( ) and C E ( ) of functions on the circle and express block unconditionality as arithmetical conditions on E. Our work shows that the spaces p E ( ) , p an even integer, have a singular behaviour from the almost isometric point of view: property (umap) does not interpolate between L E p ( ) and L E p + 2 ( ) . These...

Multi-variate correlation and mixtures of product measures

Tim Austin (2020)

Kybernetika

Total correlation (‘TC’) and dual total correlation (‘DTC’) are two classical ways to quantify the correlation among an n -tuple of random variables. They both reduce to mutual information when n = 2 . The first part of this paper sets up the theory of TC and DTC for general random variables, not necessarily finite-valued. This generality has not been exposed in the literature before. The second part considers the structural implications when a joint distribution μ has small TC or DTC. If TC ( μ ) = o ( n ) , then μ is...

Currently displaying 1 – 10 of 10

Page 1