On the lower classes of some mixed fractional Gaussian processes with two logarithmic factors.
In the present work, we briefly analyze the development of the mathematical theory of records. We first consider applications associated with records. We then view distributional and limit results for record values and times. We further present methods of generation of continuous records. In the end of this work, we discuss some tests based on records.
The maximum M of a critical Bienaymé-Galton-Watson process conditioned on the total progeny N is studied. Imbedding of the process in a random walk is used. A limit theorem for the distribution of M as N → ∞ is proved. The result is trasferred to the non-critical processes. A corollary for the maximal strata of a random rooted labeled tree is obtained.
A method is presented to compute the activity of a radioactive source. The principle of the method is based on the tuning of b, the time constant of the RC circuit of the detector with l being the rate of emission of the source, using a statistical argument.The stochastical process involved refers to the distribution of the following random voltage:Vt = ∑(0 < ti ≤ t) Yi c-b(t - ti)where the ti are Poisson dates of emission and the Yi are random or deterministic pulse heights. The case of...
We consider the nearest neighbor random walk on planar graphs. For certain families of these graphs, we give explicit upper bounds on the norm of the random walk operator in terms of the minimal number of edges at each vertex. We show that for a wide range of planar graphs the spectral radius of the random walk is less than one.
We compute explicitly the number of paths of given length joining two vertices of the Cayley graph of the free product of cyclic groups of order k.
We investigate convergence and divergence of specific subsequences of partial sums with respect to the Walsh system on martingale Hardy spaces. By using these results we obtain a relationship of the ratio of convergence of the partial sums of the Walsh series and the modulus of continuity of the martingale. These conditions are in a sense necessary and sufficient.
Let X be the unique normal martingale such that X0=0 and d[X]t=(1−t−Xt−) dXt+dt and let Yt:=Xt+t for all t≥0; the semimartingale Y arises in quantum probability, where it is the monotone-independent analogue of the Poisson process. The trajectories of Y are examined and various probabilistic properties are derived; in particular, the level set {t≥0: Yt=1} is shown to be non-empty, compact, perfect and of zero Lebesgue measure. The local times of Y are found to be trivial except for that at level...