Some properties of fully submitted processes.
For a superprocess under a stochastic flow in one dimension, we prove that it has a density with respect to the Lebesgue measure. A stochastic partial differential equation is derived for the density. The regularity of the solution is then proved by using Krylov’s Lp-theory for linear SPDE.
The paper clarifies the connection between Urbanik's and Miamee and Pourahmadi's concepts of duality for univariate weakly stationary random sequences. Some of Urbanik's results are proved in an alternative way and at the same time generalized to the multivariate case.