Displaying 161 – 180 of 218

Showing per page

Convergence of randomly oscillating point patterns to the Poisson point process

Jan Rataj, Ivan Saxl, Karol Pelikán (1993)

Applications of Mathematics

Oscillating point patterns are point processes derived from a locally finite set in a finite dimensional space by i.i.d. random oscillation of individual points. An upper and lower bound for the variation distance of the oscillating point pattern from the limit stationary Poisson process is established. As a consequence, the true order of the convergence rate in variation norm for the special case of isotropic Gaussian oscillations applied to the regular cubic net is found. To illustrate these theoretical...

Convergence of simple random walks on random discrete trees to brownian motion on the continuum random tree

David Croydon (2008)

Annales de l'I.H.P. Probabilités et statistiques

In this article it is shown that the brownian motion on the continuum random tree is the scaling limit of the simple random walks on any family of discrete n-vertex ordered graph trees whose search-depth functions converge to the brownian excursion as n→∞. We prove both a quenched version (for typical realisations of the trees) and an annealed version (averaged over all realisations of the trees) of our main result. The assumptions of the article cover the important example of simple random walks...

Convergence rates for the full gaussian rough paths

Peter Friz, Sebastian Riedel (2014)

Annales de l'I.H.P. Probabilités et statistiques

Under the key assumption of finite ρ -variation, ρ [ 1 , 2 ) , of the covariance of the underlying Gaussian process, sharp a.s. convergence rates for approximations of Gaussian rough paths are established. When applied to Brownian resp. fractional Brownian motion (fBM), ρ = 1 resp. ρ = 1 / ( 2 H ) , we recover and extend the respective results of (Trans. Amer. Math. Soc.361 (2009) 2689–2718) and (Ann. Inst. Henri Poincasé Probab. Stat.48(2012) 518–550). In particular, we establish an a.s. rate k - ( 1 / ρ - 1 / 2 - ε ) , any ε g t ; 0 , for Wong–Zakai and Milstein-type...

Convex hulls, Sticky particle dynamics and Pressure-less gas system

Octave Moutsinga (2008)

Annales mathématiques Blaise Pascal

We introduce a new condition which extends the definition of sticky particle dynamics to the case of discontinuous initial velocities u 0 with negative jumps. We show the existence of a stochastic process and a forward flow φ satisfying X s + t = φ ( X s , t , P s , u s ) and d X t = E [ u 0 ( X 0 ) / X t ] d t , where P s = P X s - 1 is the law of X s and u s ( x ) = E [ u 0 ( X 0 ) / X s = x ] is the velocity of particle x at time s 0 . Results on the flow characterization and Lipschitz continuity are also given.Moreover, the map ( x , t ) M ( x , t ) : = P ( X t x ) is the entropy solution of a scalar conservation law t M + x ( A ( M ) ) = 0 where the flux A represents the particles...

Currently displaying 161 – 180 of 218