Calculs formels sur les e.d.s. de Stratonovitch
On étudie les espaces de Sobolev construits sur un espace localement convexe muni d’une mesure gaussienne centree . Si est de Radon, on démontre que les capacités naturelles sont tendues sur les compacts. Cela résulte d’un principe général relatif aux quasi-normes.On s’intéresse également aux fonctions quasi-continues a valeurs banachiques, ce qui est utile pour les propriétés de Nikodym, et à des applications à la continuité des trajectoires des intégrales stochastiques.
This work is concerned with the theory of initial and progressive enlargements of a reference filtration F with a random timeτ. We provide, under an equivalence assumption, slightly stronger than the absolute continuity assumption of Jacod, alternative proofs to results concerning canonical decomposition of an F -martingale in the enlarged filtrations. Also, we address martingales’ characterization in the enlarged filtrations in terms of martingales in the reference filtration, as well as predictable...
In this paper, we prove some central and non-central limit theorems for renormalized weighted power variations of order q≥2 of the fractional brownian motion with Hurst parameter H∈(0, 1), where q is an integer. The central limit holds for 1/2q<H≤1−1/2q, the limit being a conditionally gaussian distribution. If H<1/2q we show the convergence in L2 to a limit which only depends on the fractional brownian motion, and if H>1−1/2q we show the convergence in L2 to a stochastic integral...
The main result is a Young-Stieltjes integral representation of the composition ϕ ∘ f of two functions f and ϕ such that for some α ∈ (0,1], ϕ has a derivative satisfying a Lipschitz condition of order α, and f has bounded p-variation for some p < 1 + α. If given α ∈ (0,1], the p-variation of f is bounded for some p < 2 + α, and ϕ has a second derivative satisfying a Lipschitz condition of order α, then a similar result holds with the Young-Stieltjes integral replaced by its extension.
In this note we prove that the Local Time at zero for a multiparametric Wiener process belongs to the Sobolev space Dk - 1/2 - ε,2 for any ε > 0. We do this computing its Wiener chaos expansion. We see also that this expansion converges almost surely. Finally, using the same technique we prove similar results for a renormalized Local Time for the autointersections of a planar Brownian motion.