On a class of measure-dependent stochastic evolution equations driven by fbm.
The Henstock-Kurzweil approach, also known as the generalized Riemann approach, has been successful in giving an alternative definition to the classical Itô integral. The Riemann approach is well-known for its directness in defining integrals. In this note we will prove the Fundamental Theorem for the Henstock-Kurzweil-Itô integral, thereby providing a characterization of Henstock-Kurzweil-Itô integrable stochastic processes in terms of their primitive processes.
We prove that the class mc4 of continuous martingales with parameter set [0,1]2, bounded in L4, is included in the class of semi-martingales Sc∞(L0(P)) defined by Allain in [A]. As a consequence we obtain a compact Itô's formula. Finally we relate this result with the compact Itô formula obtained by Sanz in [S] for martingales of mc4.
We use the general Riemann approach to define the Stratonovich integral with respect to Brownian motion. Our new definition of Stratonovich integral encompass the classical Stratonovich integral and more importantly, satisfies the ideal Itô formula without the “tail” term, that is, Further, the condition on the integrands in this paper is weaker than the classical one.
In this paper we derive the Integration-by-Parts Formula using the generalized Riemann approach to stochastic integrals, which is called the Itô-Kurzweil-Henstock integral.
We analyse multivalued stochastic differential equations driven by semimartingales. Such equations are understood as the corresponding multivalued stochastic integral equations. Under suitable conditions, it is shown that the considered multivalued stochastic differential equation admits at least one solution. Then we prove that the set of all solutions is closed and bounded.