Existence of square-mean almost periodic mild solutions to some nonautonomous stochastic second-order differential equations.
For the stochastic viability problem of the form dx(t) ∈ F(t,x(t))dt+g(t,x(t))dW(t), x(t) ∈ K(t), where K, F are set-valued maps which may have nonconvex values, g is a single-valued function, we establish the existence of solutions under the assumption that F and g possess Lipschitz property and satisfy some tangential conditions.
We study a free energy computation procedure, introduced in [Darve and Pohorille, J. Chem. Phys.115 (2001) 9169–9183; Hénin and Chipot, J. Chem. Phys.121 (2004) 2904–2914], which relies on the long-time behavior of a nonlinear stochastic differential equation. This nonlinearity comes from a conditional expectation computed with respect to one coordinate of the solution. The long-time convergence of the solutions to this equation has been proved in [Lelièvre et al., Nonlinearity21 (2008) 1155–1181],...
We consider a system of fully coupled forward-backward stochastic differential equations. First we generalize the results of Pardoux-Tang [7] concerning the regularity of the solutions with respect to initial conditions. Then, we prove that in some particular cases this system leads to a probabilistic representation of solutions of a second-order PDE whose second order coefficients depend on the gradient of the solution. We then give some examples in dimension 1 and dimension 2 for which the assumptions...
MSC 2010: 26A33, 35R11, 35R60, 35Q84, 60H10 Dedicated to 80-th anniversary of Professor Rudolf GorenfloThere is a well-known relationship between the Itô stochastic differential equations (SDEs) and the associated partial differential equations called Fokker-Planck equations, also called Kolmogorov equations. The Brownian motion plays the role of the basic driving process for SDEs. This paper provides fractional generalizations of the triple relationship between the driving process, corresponding...