Displaying 401 – 420 of 612

Showing per page

Propagation of chaos for the 2D viscous vortex model

Nicolas Fournier, Maxime Hauray, Stéphane Mischler (2014)

Journal of the European Mathematical Society

We consider a stochastic system of N particles, usually called vortices in that setting, approximating the 2D Navier-Stokes equation written in vorticity. Assuming that the initial distribution of the position and circulation of the vortices has finite (partial) entropy and a finite moment of positive order, we show that the empirical measure of the particle system converges in law to the unique (under suitable a priori estimates) solution of the 2D Navier-Stokes equation. We actually prove a slightly...

Propagation of Growth Uncertainty in a Physiologically Structured Population

H.T. Banks, S. Hu (2012)

Mathematical Modelling of Natural Phenomena

In this review paper we consider physiologically structured population models that have been widely studied and employed in the literature to model the dynamics of a wide variety of populations. However in a number of cases these have been found inadequate to describe some phenomena arising in certain real-world applications such as dispersion in the structure variables due to growth uncertainty/variability. Prompted by this, we described two recent...

Properties of generalized set-valued stochastic integrals

Michał Kisielewicz (2014)

Discussiones Mathematicae, Differential Inclusions, Control and Optimization

The paper is devoted to properties of generalized set-valued stochastic integrals defined in [10]. These integrals generalize set-valued stochastic integrals defined by E.J. Jung and J.H. Kim in the paper [4]. Up to now we were not able to construct any example of set-valued stochastic processes, different on a singleton, having integrably bounded set-valued integrals defined in [4]. It was shown by M. Michta (see [11]) that in the general case set-valued stochastic integrals defined by E.J. Jung...

Quantum random walk revisited

Kalyan B. Sinha (2006)

Banach Center Publications

In the framework of the symmetric Fock space over L²(ℝ₊), the details of the approximation of the four fundamental quantum stochastic increments by the four appropriate spin-matrices are studied. Then this result is used to prove the strong convergence of a quantum random walk as a map from an initial algebra 𝓐 into 𝓐 ⊗ ℬ (Fock(L²(ℝ₊))) to a *-homomorphic quantum stochastic flow.

Quasi-diffusion solution of a stochastic differential equation

Agnieszka Plucińska, Wojciech Szymański (2007)

Applicationes Mathematicae

We consider the stochastic differential equation X t = X + 0 t ( A s + B s X s ) d s + 0 t C s d Y s , where A t , B t , C t are nonrandom continuous functions of t, X₀ is an initial random variable, Y = ( Y t , t 0 ) is a Gaussian process and X₀, Y are independent. We give the form of the solution ( X t ) to (0.1) and then basing on the results of Plucińska [Teor. Veroyatnost. i Primenen. 25 (1980)] we prove that ( X t ) is a quasi-diffusion proces.

Currently displaying 401 – 420 of 612