Displaying 121 – 140 of 612

Showing per page

Control of a class of chaotic systems by a stochastic delay method

Lan Zhang, Cheng Jian Zhang, Dongming Zhao (2010)

Kybernetika

A delay stochastic method is introduced to control a certain class of chaotic systems. With the Lyapunov method, a suitable kind of controllers with multiplicative noise is designed to stabilize the chaotic state to the equilibrium point. The method is simple and can be put into practice. Numerical simulations are provided to illustrate the effectiveness of the proposed controllable conditions.

Controllability of nonlinear impulsive Ito type stochastic systems

Rathinasamy Sakthivel (2009)

International Journal of Applied Mathematics and Computer Science

In this article, we consider finite dimensional dynamical control systems described by nonlinear impulsive Ito type stochastic integrodifferential equations. Necessary and sufficient conditions for complete controllability of nonlinear impulsive stochastic systems are formulated and proved under the natural assumption that the corresponding linear system is appropriately controllable. A fixed point approach is employed for achieving the required result.

Controllability of semilinear stochastic integrodifferential systems

Krishnan Balachandran, S. Karthikeyan, Jeong-Hoon Kim (2007)

Kybernetika

In this paper we study the approximate and complete controllability of stochastic integrodifferential system in finite dimensional spaces. Sufficient conditions are established for each of these types of controllability. The results are obtained by using the Picard iteration technique.

Controlling the stochastic sensitivity in thermochemical systems under incomplete information

Irina Bashkirtseva (2018)

Kybernetika

Complex dynamic regimes connected with the noise-induced mixed-mode oscillations in the thermochemical model of flow reactor are studied. It is revealed that the underlying reason of such excitability is in the high stochastic sensitivity of the equilibrium. The problem of stabilization of the excitable equilibrium regimes is investigated. We develop the control approach using feedback regulators which reduce the stochastic sensitivity and keep the randomly forced system near the stable equilibrium....

Convergence rates for the full gaussian rough paths

Peter Friz, Sebastian Riedel (2014)

Annales de l'I.H.P. Probabilités et statistiques

Under the key assumption of finite ρ -variation, ρ [ 1 , 2 ) , of the covariance of the underlying Gaussian process, sharp a.s. convergence rates for approximations of Gaussian rough paths are established. When applied to Brownian resp. fractional Brownian motion (fBM), ρ = 1 resp. ρ = 1 / ( 2 H ) , we recover and extend the respective results of (Trans. Amer. Math. Soc.361 (2009) 2689–2718) and (Ann. Inst. Henri Poincasé Probab. Stat.48(2012) 518–550). In particular, we establish an a.s. rate k - ( 1 / ρ - 1 / 2 - ε ) , any ε g t ; 0 , for Wong–Zakai and Milstein-type...

Convex hulls, Sticky particle dynamics and Pressure-less gas system

Octave Moutsinga (2008)

Annales mathématiques Blaise Pascal

We introduce a new condition which extends the definition of sticky particle dynamics to the case of discontinuous initial velocities u 0 with negative jumps. We show the existence of a stochastic process and a forward flow φ satisfying X s + t = φ ( X s , t , P s , u s ) and d X t = E [ u 0 ( X 0 ) / X t ] d t , where P s = P X s - 1 is the law of X s and u s ( x ) = E [ u 0 ( X 0 ) / X s = x ] is the velocity of particle x at time s 0 . Results on the flow characterization and Lipschitz continuity are also given.Moreover, the map ( x , t ) M ( x , t ) : = P ( X t x ) is the entropy solution of a scalar conservation law t M + x ( A ( M ) ) = 0 where the flux A represents the particles...

Degenerate stochastic differential equations for catalytic branching networks

Sandra Kliem (2009)

Annales de l'I.H.P. Probabilités et statistiques

Uniqueness of the martingale problem corresponding to a degenerate SDE which models catalytic branching networks is proven. This work is an extension of the paper by Dawson and Perkins [Illinois J. Math.50 (2006) 323–383] to arbitrary catalytic branching networks. As part of the proof estimates on the corresponding semigroup are found in terms of weighted Hölder norms for arbitrary networks, which are proven to be equivalent to the semigroup norm for this generalized setting.

Currently displaying 121 – 140 of 612