The search session has expired. Please query the service again.
In this paper, we investigate Nash equilibrium payoffs for nonzero-sum stochastic differential games with reflection. We obtain an existence theorem and a characterization theorem of Nash equilibrium payoffs for nonzero-sum stochastic differential games with nonlinear cost functionals defined by doubly controlled reflected backward stochastic differential equations.
We study the non-autonomous stochastic Cauchy problem on a real Banach space E,
, t ∈ [0,T], U(0) = u₀.
Here, is a cylindrical Brownian motion on a real separable Hilbert space H, are closed and densely defined operators from a constant domain (B) ⊂ H into E, denotes the generator of an evolution family on E, and u₀ ∈ E. In the first part, we study existence of weak and mild solutions by methods of van Neerven and Weis. Then we use a well-known factorisation method in the setting of evolution...
This paper deals with nonlinear filtering problems with delays, i.e., we consider a system (X,Y), which can be represented by means of a system (X,Ŷ), in the sense that Yt = Ŷa(t), where a(t) is a delayed time transformation. We start with X being a Markov process, and then study Markovian systems, not necessarily diffusive, with correlated noises. The interest is focused on the existence of explicit representations of the corresponding filters as functionals depending on the observed trajectory....
We study the problem of existence, uniqueness and regularity of probabilistic solutions of the Cauchy problem for nonlinear stochastic partial differential equations involving operators corresponding to regular (nonsymmetric) Dirichlet forms. In the proofs we combine the methods of backward doubly stochastic differential equations with those of probabilistic potential theory and Dirichlet forms.
The paper deals with a filter design for nonlinear continuous stochastic systems with discrete-time measurements. The general recursive solution is given by the Fokker–Planck equation (FPE) and by the Bayesian rule. The stress is laid on the computation of the predictive conditional probability density function from the FPE. The solution of the FPE and its integration into the estimation algorithm is the cornerstone for the whole recursive computation. A new usable numerical scheme for the FPE is...
The main aim of this paper is to study stochastic PDE's with delay terms. In fact, we prove existence and uniqueness of solutions (in Itô's sense) for a rather general type of stochastic PDE's with non-linear monotone operators and with delays.
We study the law of functionals whose prototype is ∫0+∞ eBs(ν) dWs(μ),where B(ν) and W(μ) are independent Brownian motions with drift. These functionals appear naturally in risk theory as well as in the study of in variant diffusions on the hyperbolic half-plane. Emphasis is put on the fact that the results are obtained in two independent, very different fashions (invariant diffusions on the hyperbolic half-plane and Bessel processes).
Currently displaying 1 –
20 of
36