-norm of infinitely divisible random vectors and certain stochastic integrals.
In this paper we prove the Local Asymptotic Mixed Normality (LAMN) property for the statistical model given by the observation of local means of a diffusion process X. Our data are given by ∫01X(s+i)/n dμ(s) for i=0, …, n−1 and the unknown parameter appears in the diffusion coefficient of the process X only. Although the data are neither markovian nor gaussian we can write down, with help of Malliavin calculus, an explicit expression for the log-likelihood of the model, and then study the asymptotic...
Sample path large deviations for the laws of the solutions of stochastic nonlinear Schrödinger equations when the noise converges to zero are presented. The noise is a complex additive gaussian noise. It is white in time and colored in space. The solutions may be global or blow-up in finite time, the two cases are distinguished. The results are stated in trajectory spaces endowed with topologies analogue to projective limit topologies. In this setting, the support of the law of the solution is also...
Sample path large deviations for the laws of the solutions of stochastic nonlinear Schrödinger equations when the noise converges to zero are presented. The noise is a complex additive Gaussian noise. It is white in time and colored in space. The solutions may be global or blow-up in finite time, the two cases are distinguished. The results are stated in trajectory spaces endowed with topologies analogue to projective limit topologies. In this setting, the support of the law of the solution is...
We study a continuous-time discrete population structured by a vector of ages. Individuals reproduce asexually, age and die. The death rate takes interactions into account. Adapting the approach of Fournier and Méléard, we show that in a large population limit, the microscopic process converges to the measure-valued solution of an equation that generalizes the McKendrick-Von Foerster and Gurtin-McCamy PDEs in demography. The large deviations associated with this convergence are studied. The upper-bound...
Sufficient and necessary conditions for equivalence of the distributions of the solutions of some linear stochastic equations in Hilbert spaces are given. Some facts in the theory of perturbations of semigroup generators and Zabczyk's results on law equivalence are used.