Random and deterministic perturbations of nonlinear oscillators.
Abstract. The main result of the present paper deals with the existence of solutions of random functional-differential inclusions of the form ẋ(t, ω) ∈ G(t, ω, x(·, ω), ẋ(·, ω)) with G taking as its values nonempty compact and convex subsets of n-dimensional Euclidean space .
Let be a measurable space and a nonempty bounded closed convex separable subset of -uniformly convex Banach space for some . We prove random fixed point theorems for a class of mappings satisfying: for each , and integer , where are functions satisfying certain conditions and is the value at of the -th iterate of the mapping . Further we establish for these mappings some random fixed point theorems in a Hilbert space, in spaces, in Hardy spaces and in Sobolev spaces ...
Let (Ω, σ) be a measurable space and K a nonempty bounded closed convex separable subset of a p-uniformly convex Banach space E for p > 1. We prove a random fixed point theorem for a class of mappings T:Ω×K ∪ K satisfying the condition: For each x, y ∈ K, ω ∈ Ω and integer n ≥ 1, ⃦Tⁿ(ω,x) - Tⁿ(ω,y) ⃦ ≤ aₙ(ω)· ⃦x - y ⃦ + bₙ(ω) ⃦x -Tⁿ(ω,x) ⃦ + ⃦y - Tⁿ(ω,y) ⃦ + cₙ(ω) ⃦x - Tⁿ(ω,y) ⃦ + ⃦y - Tⁿ(ω,x) ⃦, where aₙ, bₙ, cₙ: Ω → [0, ∞) are functions satisfying certain conditions and Tⁿ(ω,x) is the value...
Let be a measurable space, be an ordered separable Banach space and let be a nonempty order interval in . It is shown that if is an increasing compact random map such that and for each then possesses a minimal random fixed point and a maximal random fixed point .
In this paper we prove a general random fixed point theorem for multivalued maps in Frechet spaces. We apply our main result to obtain some common random fixed point theorems. Our main result unifies and extends the work due to Benavides, Acedo and Xu [4], Itoh [8], Lin [12], Liu [13], Tan and Yuan [20], Xu [23], etc.