Factorisation d'opérateurs aléatoires, d'après Benyamini et Gordon
Arbitrage-free prices of European contracts on risky assets whose log-returns are modelled by Lévy processes satisfy a parabolic partial integro-differential equation (PIDE) . This PIDE is localized to bounded domains and the error due to this localization is estimated. The localized PIDE is discretized by the -scheme in time and a wavelet Galerkin method with degrees of freedom in log-price space. The dense matrix for can be replaced by a sparse matrix in the wavelet basis, and the linear...
Arbitrage-free prices u of European contracts on risky assets whose log-returns are modelled by Lévy processes satisfy a parabolic partial integro-differential equation (PIDE) . This PIDE is localized to bounded domains and the error due to this localization is estimated. The localized PIDE is discretized by the θ-scheme in time and a wavelet Galerkin method with N degrees of freedom in log-price space. The dense matrix for can be replaced by a sparse matrix in the wavelet basis, and the...
In this paper, we propose a numerical method to solve stochastic elliptic interface problems with random interfaces. Shape calculus is first employed to derive the shape-Taylor expansion in the framework of the asymptotic perturbation approach. Given the mean field and the two-point correlation function of the random interface, we can thus quantify the mean field and the variance of the random solution in terms of certain orders of the perturbation amplitude by solving a deterministic elliptic interface...