Page 1

Displaying 1 – 5 of 5

Showing per page

Determinantal transition kernels for some interacting particles on the line

A. B. Dieker, J. Warren (2008)

Annales de l'I.H.P. Probabilités et statistiques

We find the transition kernels for four markovian interacting particle systems on the line, by proving that each of these kernels is intertwined with a Karlin–McGregor-type kernel. The resulting kernels all inherit the determinantal structure from the Karlin–McGregor formula, and have a similar form to Schütz’s kernel for the totally asymmetric simple exclusion process.

Discrete time markovian agents interacting through a potential

Amarjit Budhiraja, Pierre Del Moral, Sylvain Rubenthaler (2013)

ESAIM: Probability and Statistics

A discrete time stochastic model for a multiagent system given in terms of a large collection of interacting Markov chains is studied. The evolution of the interacting particles is described through a time inhomogeneous transition probability kernel that depends on the ‘gradient’ of the potential field. The particles, in turn, dynamically modify the potential field through their cumulative input. Interacting Markov processes of the above form have been suggested as models for active biological transport...

Discrete time risk sensitive portfolio optimization with consumption and proportional transaction costs

Łukasz Stettner (2005)

Applicationes Mathematicae

Risk sensitive and risk neutral long run portfolio problems with consumption and proportional transaction costs are studied. Existence of solutions to suitable Bellman equations is shown. The asymptotics of the risk sensitive cost when the risk factor converges to 0 is then considered. It turns out that optimal strategies are stationary functions of the portfolio (portions of the wealth invested in assets) and of economic factors. Furthermore an optimal portfolio strategy for a risk neutral control...

Currently displaying 1 – 5 of 5

Page 1