Page 1 Next

Displaying 1 – 20 of 24

Showing per page

Decay of covariances, uniqueness of ergodic component and scaling limit for a class of φ systems with non-convex potential

Codina Cotar, Jean-Dominique Deuschel (2012)

Annales de l'I.H.P. Probabilités et statistiques

We consider a gradient interface model on the lattice with interaction potential which is a non-convex perturbation of a convex potential. Using a technique which decouples the neighboring vertices into even and odd vertices, we show for a class of non-convex potentials: the uniqueness of ergodic component for φ -Gibbs measures, the decay of covariances, the scaling limit and the strict convexity of the surface tension.

Degenerate stochastic differential equations for catalytic branching networks

Sandra Kliem (2009)

Annales de l'I.H.P. Probabilités et statistiques

Uniqueness of the martingale problem corresponding to a degenerate SDE which models catalytic branching networks is proven. This work is an extension of the paper by Dawson and Perkins [Illinois J. Math.50 (2006) 323–383] to arbitrary catalytic branching networks. As part of the proof estimates on the corresponding semigroup are found in terms of weighted Hölder norms for arbitrary networks, which are proven to be equivalent to the semigroup norm for this generalized setting.

Determinantal transition kernels for some interacting particles on the line

A. B. Dieker, J. Warren (2008)

Annales de l'I.H.P. Probabilités et statistiques

We find the transition kernels for four markovian interacting particle systems on the line, by proving that each of these kernels is intertwined with a Karlin–McGregor-type kernel. The resulting kernels all inherit the determinantal structure from the Karlin–McGregor formula, and have a similar form to Schütz’s kernel for the totally asymmetric simple exclusion process.

Diffusion Monte Carlo method: Numerical Analysis in a Simple Case

Mohamed El Makrini, Benjamin Jourdain, Tony Lelièvre (2007)

ESAIM: Mathematical Modelling and Numerical Analysis


The Diffusion Monte Carlo method is devoted to the computation of electronic ground-state energies of molecules. In this paper, we focus on implementations of this method which consist in exploring the configuration space with a fixed number of random walkers evolving according to a stochastic differential equation discretized in time. We allow stochastic reconfigurations of the walkers to reduce the discrepancy between the weights that they carry. On a simple one-dimensional example, we prove...

Directed polymer in random environment and last passage percolation*

Philippe Carmona (2010)

ESAIM: Probability and Statistics

The sequence of random probability measures νn that gives a path of length n, 1 n times the sum of the random weights collected along the paths, is shown to satisfy a large deviations principle with good rate function the Legendre transform of the free energy of the associated directed polymer in a random environment. Consequences on the asymptotics of the typical number of paths whose collected weight is above a fixed proportion are then drawn.

Discrete time markovian agents interacting through a potential

Amarjit Budhiraja, Pierre Del Moral, Sylvain Rubenthaler (2013)

ESAIM: Probability and Statistics

A discrete time stochastic model for a multiagent system given in terms of a large collection of interacting Markov chains is studied. The evolution of the interacting particles is described through a time inhomogeneous transition probability kernel that depends on the ‘gradient’ of the potential field. The particles, in turn, dynamically modify the potential field through their cumulative input. Interacting Markov processes of the above form have been suggested as models for active biological transport...

Disorder relevance at marginality and critical point shift

Giambattista Giacomin, Hubert Lacoin, Fabio Lucio Toninelli (2011)

Annales de l'I.H.P. Probabilités et statistiques

Recently the renormalization group predictions on the effect of disorder on pinning models have been put on mathematical grounds. The picture is particularly complete if the disorder is relevant or irrelevant in the Harris criterion sense: the question addressed is whether quenched disorder leads to a critical behavior which is different from the one observed in the pure, i.e. annealed, system. The Harris criterion prediction is based on the sign of the specific heat exponent of the pure system,...

Disorder relevance for the random walk pinning model in dimension 3

Matthias Birkner, Rongfeng Sun (2011)

Annales de l'I.H.P. Probabilités et statistiques

We study the continuous time version of the random walk pinning model, where conditioned on a continuous time random walk (Ys)s≥0 on ℤd with jump rate ρ > 0, which plays the role of disorder, the law up to time t of a second independent random walk (Xs)0≤s≤t with jump rate 1 is Gibbs transformed with weight eβLt(X,Y), where Lt(X, Y) is the collision local time between X and Y up to time t. As the inverse temperature β varies, the model undergoes a localization–delocalization transition at...

Currently displaying 1 – 20 of 24

Page 1 Next