Previous Page 2

Displaying 21 – 40 of 40

Showing per page

On the core property of the cylinder functions class in the construction of interacting particle systems

Anja Voss-Böhme (2011)

Kybernetika

For general interacting particle systems in the sense of Liggett, it is proven that the class of cylinder functions forms a core for the associated Markov generator. It is argued that this result cannot be concluded by straightforwardly generalizing the standard proof technique that is applied when constructing interacting particle systems from their Markov pregenerators.

On the mixed even-spin Sherrington–Kirkpatrick model with ferromagnetic interaction

Wei-Kuo Chen (2014)

Annales de l'I.H.P. Probabilités et statistiques

We study a spin system with both mixed even-spin Sherrington–Kirkpatrick (SK) couplings and Curie–Weiss (CW) interaction. Our main results are: (i) The thermodynamic limit of the free energy is given by a variational formula involving the free energy of the SK model with a change in the external field. (ii) In the presence of a centered Gaussian external field, the positivity of the overlap and the extended Ghirlanda–Guerra identities hold on a dense subset of the temperature parameters. (iii) We...

On the number of ground states of the Edwards–Anderson spin glass model

Louis-Pierre Arguin, Michael Damron (2014)

Annales de l'I.H.P. Probabilités et statistiques

Ground states of the Edwards–Anderson (EA) spin glass model are studied on infinite graphs with finite degree. Ground states are spin configurations that locally minimize the EA Hamiltonian on each finite set of vertices. A problem with far-reaching consequences in mathematics and physics is to determine the number of ground states for the model on d for any d . This problem can be seen as the spin glass version of determining the number of infinite geodesics in first-passage percolation or the number...

On the small maximal flows in first passage percolation

Marie Théret (2008)

Annales de la faculté des sciences de Toulouse Mathématiques

We consider the standard first passage percolation on d : with each edge of the lattice we associate a random capacity. We are interested in the maximal flow through a cylinder in this graph. Under some assumptions Kesten proved in 1987 a law of large numbers for the rescaled flow. Chayes and Chayes established that the large deviations far away below its typical value are of surface order, at least for the Bernoulli percolation and cylinders of certain height. Thanks to another approach we extend...

On the Structure of Spatial Branching Processes

Matthes, Klaus, Nawrotzki, Kurt, Siegmund-Schultze, Rainer (1997)

Serdica Mathematical Journal

The paper is a contribution to the theory of branching processes with discrete time and a general phase space in the sense of [2]. We characterize the class of regular, i.e. in a sense sufficiently random, branching processes (Φk) k∈Z by almost sure properties of their realizations without making any assumptions about stationarity or existence of moments. This enables us to classify the clans of (Φk) into the regular part and the completely non-regular part. It turns out that the completely non-regular branching...

On the time constant in a dependent first passage percolation model

Julie Scholler (2014)

ESAIM: Probability and Statistics

We pursue the study of a random coloring first passage percolation model introduced by Fontes and Newman. We prove that the asymptotic shape of this first passage percolation model continuously depends on the law of the coloring. The proof uses several couplings, particularly with greedy lattice animals.

Currently displaying 21 – 40 of 40

Previous Page 2