Quantum stochastic differential equations driven by free noises and dilations of markovian semigroups
This work is concerned with asymptotic properties of multi-dimensional random walks in random environment. Under Kalikow’s condition, we show a central limit theorem for random walks in random environment on , when . We also derive tail estimates on the probability of slowdowns. These latter estimates are of special interest due to the natural interplay between slowdowns and the presence of traps in the medium. The tail behavior of the renewal time constructed in [25] plays an important role in...
Stimuli-responsive polymers result in on-demand regulation of properties and functioning of various nanoscale systems. In particular, they allow stimuli-responsive control of flow rates through membranes and nanofluidic devices with submicron channel sizes. They also allow regulation of drug release from nanoparticles and nanofibers in response to temperature or pH variation in the surrounding medium. In the present work two relevant mathematical models are introduced to address precipitation-driven...
For a set A ⊂ C[0, ∞), we give new results on the growth of the number of particles in a branching Brownian motion whose paths fall within A. We show that it is possible to work without rescaling the paths. We give large deviations probabilities as well as a more sophisticated proof of a result on growth in the number of particles along certain sets of paths. Our results reveal that the number of particles can oscillate dramatically. We also obtain new results on the number of particles near the...