Previous Page 20

Displaying 381 – 383 of 383

Showing per page

Extreme values and kernel estimates of point processes boundaries

Stéphane Girard, Pierre Jacob (2010)

ESAIM: Probability and Statistics

We present a method for estimating the edge of a two-dimensional bounded set, given a finite random set of points drawn from the interior. The estimator is based both on a Parzen-Rosenblatt kernel and extreme values of point processes. We give conditions for various kinds of convergence and asymptotic normality. We propose a method of reducing the negative bias and edge effects, illustrated by some simulations.

Extremes of spheroid shape factor based on two dimensional profiles

Daniel Hlubinka (2006)

Kybernetika

The extremal shape factor of spheroidal particles is studied. Three dimensional particles are considered to be observed via their two dimensional profiles and the problem is to predict the extremal shape factor in a given size class. We proof the stability of the domain of attraction of the spheroid’s and its profile shape factor under a tail equivalence condition. We show namely that the Farlie–Gumbel–Morgenstern bivariate distributions gives the tail uniformity. We provide a way how to find normalising...

Currently displaying 381 – 383 of 383

Previous Page 20