Page 1 Next

Displaying 1 – 20 of 253

Showing per page

M -estimation in nonlinear regression for longitudinal data

Martina Orsáková (2007)

Kybernetika

The longitudinal regression model Z i j = m ( θ 0 , 𝕏 i ( T i j ) ) + ε i j , where Z i j is the j th measurement of the i th subject at random time T i j , m is the regression function, 𝕏 i ( T i j ) is a predictable covariate process observed at time T i j and ε i j is a noise, is studied in marked point process framework. In this paper we introduce the assumptions which guarantee the consistency and asymptotic normality of smooth M -estimator of unknown parameter θ 0 .

M -estimators of structural parameters in pseudolinear models

Friedrich Liese, Igor Vajda (1999)

Applications of Mathematics

Real valued M -estimators θ ^ n : = min 1 n ρ ( Y i - τ ( θ ) ) in a statistical model with observations Y i F θ 0 are replaced by p -valued M -estimators β ^ n : = min 1 n ρ ( Y i - τ ( u ( z i T β ) ) ) in a new model with observations Y i F u ( z i t β 0 ) , where z i p are regressors, β 0 p is a structural parameter and u : a structural function of the new model. Sufficient conditions for the consistency of β ^ n are derived, motivated by the sufficiency conditions for the simpler “parent estimator” θ ^ n . The result is a general method of consistent estimation in a class of nonlinear (pseudolinear) statistical problems. If...

Maintenance policy under multiple unrevealed failure.

Francisco Germán Badía Blasco, M.ª Dolores Berrade Ursúa, Clemente A. Campos (2002)

Qüestiió

The unrevealed failures of a system are detected only by inspection. In this work, an inspection policy along with a maintenance procedure for multiunit systems with dependent times to failure is presented. The existence of an optimum policy is also discussed.

Making use of incomplete observations for regression in bivariate normal model

Joanna Tarasińska (2003)

Applications of Mathematics

Two estimates of the regression coefficient in bivariate normal distribution are considered: the usual one based on a sample and a new one making use of additional observations of one of the variables. They are compared with respect to variance. The same is done for two regression lines. The conclusion is that the additional observations are worth using only when the sample is very small.

Manifold indexed fractional fields

Jacques Istas (2012)

ESAIM: Probability and Statistics

(Local) self-similarity is a seminal concept, especially for Euclidean random fields. We study in this paper the extension of these notions to manifold indexed fields. We give conditions on the (local) self-similarity index that ensure the existence of fractional fields. Moreover, we explain how to identify the self-similar index. We describe a way of simulating Gaussian fractional fields.

Manifold indexed fractional fields∗

Jacques Istas (2012)

ESAIM: Probability and Statistics

(Local) self-similarity is a seminal concept, especially for Euclidean random fields. We study in this paper the extension of these notions to manifold indexed fields. We give conditions on the (local) self-similarity index that ensure the existence of fractional fields. Moreover, we explain how to identify the self-similar index. We describe a way of simulating Gaussian fractional fields.

Marginal problem, statistical estimation, and Möbius formula

Martin Janžura (2007)

Kybernetika

A solution to the marginal problem is obtained in a form of parametric exponential (Gibbs–Markov) distribution, where the unknown parameters are obtained by an optimization procedure that agrees with the maximum likelihood (ML) estimate. With respect to a difficult performance of the method we propose also an alternative approach, providing the original basis of marginals can be appropriately extended. Then the (numerically feasible) solution can be obtained either by the maximum pseudo-likelihood...

Markov bases of conditional independence models for permutations

Villő Csiszár (2009)

Kybernetika

The L-decomposable and the bi-decomposable models are two families of distributions on the set S n of all permutations of the first n positive integers. Both of these models are characterized by collections of conditional independence relations. We first compute a Markov basis for the L-decomposable model, then give partial results about the Markov basis of the bi-decomposable model. Using these Markov bases, we show that not all bi-decomposable distributions can be approximated arbitrarily well by...

Markov operators and n-copulas

P. Mikusiński, M. D. Taylor (2009)

Annales Polonici Mathematici

We extend the definition of Markov operator in the sense of J. R. Brown and of earlier work of the authors to a setting appropriate to the study of n-copulas. Basic properties of this extension are studied.

Mathematical and Computational Models in Tumor Immunology

F. Pappalardo, A. Palladini, M. Pennisi, F. Castiglione, S. Motta (2012)

Mathematical Modelling of Natural Phenomena

The immune system is able to protect the host from tumor onset, and immune deficiencies are accompanied by an increased risk of cancer. Immunology is one of the fields in biology where the role of computational and mathematical modeling and analysis were recognized the earliest, beginning from 60s of the last century. We introduce the two most common methods in simulating the competition among the immune system, cancers and tumor immunology strategies:...

Currently displaying 1 – 20 of 253

Page 1 Next