Page 1 Next

Displaying 1 – 20 of 28

Showing per page

k -Depth-nearest Neighbour Method and its Performance on Skew-normal Distributons

Ondřej Vencálek (2013)

Acta Universitatis Palackianae Olomucensis. Facultas Rerum Naturalium. Mathematica

In the present paper we investigate performance of the k -depth-nearest classifier. This classifier, proposed recently by Vencálek, uses the concept of data depth to improve the classification method known as the k -nearest neighbour. Simulation study which is presented here deals with the two-class classification problem in which the considered distributions belong to the family of skewed normal distributions.

Kalman filter with a non-linear non-Gaussian observation relation.

Tomás Cipra, Asunción Rubio (1991)

Trabajos de Estadística

The dynamic linear model with a non-linear non-Gaussian observation relation is considered in this paper. Masreliez's theorem (see Masreliez's (1975)) of approximate non-Gaussian filtering with linear state and observation relations is extended to the case of a non-linear observation relation that can be approximated by a second-order Taylor expansion.

Kendall's tau-type rank statistics in genome data

Moonsu Kang, Pranab Kumar Sen (2008)

Applications of Mathematics

High-dimensional data models abound in genomics studies, where often inadequately small sample sizes create impasses for incorporation of standard statistical tools. Conventional assumptions of linearity of regression, homoscedasticity and (multi-) normality of errors may not be tenable in many such interdisciplinary setups. In this study, Kendall's tau-type rank statistics are employed for statistical inference, avoiding most of parametric assumptions to a greater extent. The proposed procedures...

Kermack-McKendrick epidemics vaccinated

Jakub Staněk (2008)

Kybernetika

This paper proposes a deterministic model for the spread of an epidemic. We extend the classical Kermack–McKendrick model, so that a more general contact rate is chosen and a vaccination added. The model is governed by a differential equation (DE) for the time dynamics of the susceptibles, infectives and removals subpopulation. We present some conditions on the existence and uniqueness of a solution to the nonlinear DE. The existence of limits and uniqueness of maximum of infected individuals are...

Kernel estimators and the Dvoretzky-Kiefer-Wolfowitz inequality

Ryszard Zieliński (2007)

Applicationes Mathematicae

It turns out that for standard kernel estimators no inequality like that of Dvoretzky-Kiefer-Wolfowitz can be constructed, and as a result it is impossible to answer the question of how many observations are needed to guarantee a prescribed level of accuracy of the estimator. A remedy is to adapt the bandwidth to the sample at hand.

Kernel Ho-Kashyap classifier with generalization control

Jacek Łęski (2004)

International Journal of Applied Mathematics and Computer Science

This paper introduces a new classifier design method based on a kernel extension of the classical Ho-Kashyap procedure. The proposed method uses an approximation of the absolute error rather than the squared error to design a classifier, which leads to robustness against outliers and a better approximation of the misclassification error. Additionally, easy control of the generalization ability is obtained using the structural risk minimization induction principle from statistical learning theory....

Kolmogorov-Smirnov two-sample test based on regression rank scores

Martin Schindler (2008)

Applications of Mathematics

We derive the two-sample Kolmogorov-Smirnov type test when a nuisance linear regression is present. The test is based on regression rank scores and provides a natural extension of the classical Kolmogorov-Smirnov test. Its asymptotic distributions under the hypothesis and the local alternatives coincide with those of the classical test.

Currently displaying 1 – 20 of 28

Page 1 Next