IFS approximations of distribution functions and related optimization problems.
We discuss three estimation methods: the method of moments, probability weighted moments, and L-moments for the scale parameter and the extreme value index in the generalized Pareto distribution under linear normalization. Moreover, we adapt these methods to use for the generalized Pareto distribution under power and exponential normalizations. A simulation study is conducted to compare the three methods on the three models and determine which is the best, which turned out to be the probability...
In this paper we consider three measures of overlap, namely Matusia’s measure , Morisita’s measure and Weitzman’s measure . These measures are usually used in quantitative ecology and stress-strength models of reliability analysis. Herein we consider two Weibull distributions having the same shape parameter and different scale parameters. This distribution is known to be the most flexible life distribution model with two parameters. Monte Carlo evaluations are used to study the bias and precision...
In this paper we consider three measures of overlap, namely Matusia's measure ρ, Morisita's measure λ and Weitzman's measure Δ. These measures are usually used in quantitative ecology and stress-strength models of reliability analysis. Herein we consider two Weibull distributions having the same shape parameter and different scale parameters. This distribution is known to be the most flexible life distribution model with two parameters. Monte Carlo evaluations are used to study the bias and precision...
Studentization and analysis of variance are simple in Gaussian families because X̅ and S² are independent random variables. We exploit the independence of the spacings in exponential populations with location λ and scale δ to develop simple ways of dealing with inference on the location parameter, namely by developing an analysis of scale in the homocedastic independent k-sample problem.
The problem of approximating mixtures of distributions has received considerable attention recently. In this paper we consider problems of estimating the mixing proportions of a finite mixture from a Bayesian perspective. The problems which arise from this methodology are basically approximations of finite measures of distributions. We propose two approximating methods and prove that under certain conditions both methods are asymptotically equivalent to a third method, which turns out to be simpler...
Information inequalities for the minimax risk of sequential estimators are derived in the case where the loss is measured by the squared error of estimation plus a linear functional of the number of observations. The results are applied to construct minimax sequential estimators of: the failure rate in an exponential model with censored data, the expected proportion of uncensored observations in the proportional hazards model, the odds ratio in a binomial distribution and the expectation of exponential...
In linear regression models the estimator of variance components needs a suitable choice of a starting point for an iterative procedure for a determination of the estimate. The aim of this paper is to find a criterion for a decision whether a linear regression model enables to determine the estimate reasonably and whether it is possible to do so when using the given data.
In the paper two approaches to the problem of estimation of transition probabilities are considered. The approach by McCullagh and Nelder [5], based on the independent model and the quasi-likelihood function, is compared with the approach based on the marginal model and the standard likelihood function. The estimates following from these two approaches are illustrated on a simple example which was used by McCullagh and Nelder.
For inferences from random-effect models Lee and Nelder (1996) proposed to use hierarchical likelihood (h-likelihood). It allows influence from models that may include both fixed and random parameters. Because of the presence of unobserved random variables h-likelihood is not a likelihood in the Fisherian sense. The Fisher likelihood framework has advantages such as generality of application, statistical and computational efficiency. We introduce an extended likelihood framework and discuss why...
The paper deals with the linear comparative calibration problem, i. e. the situation when both variables are subject to errors. Considered is a quite general model which allows to include possibly correlated data (measurements). From statistical point of view the model could be represented by the linear errors-in-variables (EIV) model. We suggest an iterative algorithm for estimation the parameters of the analysis function (inverse of the calibration line) and we solve the problem of deriving the...
Linear error propagation law (LEPL) has been using frequently also for nonlinear functions. It can be adequate for an actual situation however it need not be so. It is useful to use some rule in order to recognize whether LEPL is admissible. The aim of the paper is to find such rule.
In nonlinear regression models an approximate value of an unknown parameter is frequently at our disposal. Then the linearization of the model is used and a linear estimate of the parameter can be calculated. Some criteria how to recognize whether a linearization is possible are developed. In the case that they are not satisfied, it is necessary to take into account either some quadratic corrections or to use the nonlinear least squares method. The aim of the paper is to find some criteria for an...