Asymptotical confidence region in a replicated mixed linear model with an estimated covariance matrix
By using three theorems (Oktaba and Kieloch [3]) and Theorem 2.2 (Srivastava and Khatri [4]) three results are given in formulas (2.1), (2.8) and (2.11). They present asymptotically normal confidence intervals for the determinant in the MGM model , , scalar , with a matrix . A known random matrix has the expected value , where the matrix is a known matrix of an experimental design, is an unknown matrix of parameters and is the covariance matrix of being the symbol of the Kronecker...
The paper concludes our investigations in looking for the locally best linear-quadratic estimators of mean value parameters and of the covariance matrix elements in a special structure of the linear model (2 variables case) where the dispersions of the observed quantities depend on the mean value parameters. Unfortunately there exists no linear-quadratic improvement of the linear estimator of mean value parameters in this model.
We study the one-sided testing problem for the exponential distribution via the empirical Bayes (EB) approach. Under a weighted linear loss function, a Bayes test is established. Using the past samples, we construct an EB test and exhibit its optimal rate of convergence. When the past samples are not directly observable, we work out an EB test by using the deconvolution kernel method and obtain its asymptotic optimality.
Given the recorded life times from a Weibull distribution, Bayes estimates of the reliability function and hazard rate are obtained using the posterior distributions and some recent results on Bayesian approximations due to Lindley (1980). Based on a Monte Carlo study, these estimates are compared with their maximum likelihood counterparts.
A homogeneous Poisson process (N(t),t ≥ 0) with the intensity function m(t)=θ is observed on the interval [0,T]. The problem consists in estimating θ with balancing the LINEX loss due to an error of estimation and the cost of sampling which depends linearly on T. The optimal T is given when the prior distribution of θ is not uniquely specified.