Discussion of D. Denis. Fisher : responsible, not guilty
El problema de hacer inferencias sobre el cociente de las medias de dos poblaciones normales, conocido como problema de Fieller-Creasy, es de interés particular en las ciencias experimentales que continuamente necesitan hacer comparaciones relativas de diferentes métodos. Desde un punto de vista bayesiano, el problema se reduce a calcular la distribución final de dicho cociente. En este trabajo se determina la distribución final de referencia, esto es, utilizando tan sólo la información proporcionada...
The paper studies the problem of selecting an estimator with (approximately) minimal asymptotic variance. For every fixed contamination level there is usually just one such estimator in the considered family. Using the first and the second derivative of the asymptotic variance with respect to the parameter which parametrizes the family of estimators the paper gives two examples of how to select the estimator and gives an approximation to a loss which we suffer when we use the estimator with approximately...
The paper studies a new class of robust regression estimators based on the two-step least weighted squares (2S-LWS) estimator which employs data-adaptive weights determined from the empirical distribution or quantile functions of regression residuals obtained from an initial robust fit. Just like many existing two-step robust methods, the proposed 2S-LWS estimator preserves robust properties of the initial robust estimate. However, contrary to the existing methods, the first-order asymptotic behavior...
The linear regression model in which the vector of the first order parameter is divided into two parts: to the vector of the useful parameters and to the vector of the nuisance parameters is considered. The type I constraints are given on the useful parameters. We examine eliminating transformations which eliminate the nuisance parameters without loss of information on the useful parameters.
Se plantea el problema de estimar una función de fiabilidad en el contexto bayesiano no paramétrico, pero utilizando técnicas paramétricas de estimación en procesos estocásticos. Se define el proceso gamma extendido, cuyas trayectorias son tasas de azar crecientes cuando se eligen convenientemente los parámetros del proceso. Se obtienen estimadores basados en este proceso, se estudian sus propiedades asintóticas bayesianas, y se termina con un ejemplo de aplicación mediante simulación.