Admissibility of Generalized Bayes Estimators in An One Parameter Nonregular Family.
BackgroundIndependence models among variables is one of the most relevant topics in epidemiology, particularly in molecular epidemiology for the study of gene-gene and gene-environment interactions. They have been studied using three main kinds of analysis: regression analysis, data mining approaches and Bayesian model selection. Recently, methods of algebraic statistics have been extensively used for applications to biology. In this paper we present...
Se construyen algunos tests para varias hipótesis paramétricas y no paramétricas. La metodología utiliza un nuevo sistema de coordinados, cuyos componentes son el estadístico suficiente mínimo y un estadístico independiente y complementario a tal estadístico.
In small to moderate sample sizes it is important to make use of all the data when there are no outliers, for reasons of efficiency. It is equally important to guard against the possibility that there may be single or multiple outliers which can have disastrous effects on normal theory least squares estimation and inference. The purpose of this paper is to describe and illustrate the use of an adaptive regression estimation algorithm which can be used to highlight outliers, either single or multiple...
Estimation in truncated parameter space is one of the most important features in statistical inference, because the frequently used criterion of unbiasedness is useless, since no unbiased estimator exists in general. So, other optimally criteria such as admissibility and minimaxity have to be looked for among others. In this paper we consider a subclass of the exponential families of distributions. Bayes estimator of a lower-bounded scale parameter, under the squared-log error loss function with...
The one-way analysis of variance is a staple of elementary statistics courses. The hypothesis test of homogeneity of the means encourages the use of the selected-model based estimators which are usually assessed without any regard for the uncertainty about the outcome of the test. We expose the weaknesses of such estimators when the uncertainty is taken into account, as it should be, and propose synthetic estimators as an alternative.