Identifiability for a class of discretized linear partial differential algebraic equations.
Modelling of building heat transfer needs two basic material characteristics: heat conduction factor and thermal capacity. Under some simplifications these two factors can be determined from a rather simple equipment, generating heat from one of two aluminium plates into the material sample and recording temperature on the contacts between the sample and the plates. However, the numerical evaluation of both characteristics leads to a non-trivial optimization problem. This article suggests an efficient...
We consider the finite element approximation of the identification problem, where one wishes to identify a curve along which a given solution of the boundary value problem possesses some specific property. We prove the convergence of FE-approximation and give some results of numerical tests.
Scalar parameter values as well as initial condition values are to be identified in initial value problems for ordinary differential equations (ODE). To achieve this goal, computer algebra tools are combined with numerical tools in the MATLAB environment. The best fit is obtained through the minimization of the summed squares of the difference between measured data and ODE solution. The minimization is based on a gradient algorithm where the gradient of the summed squares is calculated either numerically...
Identification problem is a framework of mathematical problems dealing with the search for optimal values of the unknown coefficients of the considered model. Using experimentally measured data, the aim of this work is to determine the coefficients of the given differential equation. This paper deals with the extension of the continuous dependence results for the Gao beam identification problem with different types of boundary conditions by using appropriate analytical inequalities with a special...
We discuss possible algorithms for interpolating data given in a set of curves and/or points in the plane. We propose a set of basic assumptions to be satisfied by the interpolation algorithms which lead to a set of models in terms of possibly degenerate elliptic partial differential equations. The Absolute Minimal Lipschitz Extension model (AMLE) is singled out and studied in more detail. We show experiments suggesting a possible application, the restoration of images with poor dynamic range. We...