Page 1 Next

Displaying 1 – 20 of 279

Showing per page

P-adaptive Hermite methods for initial value problems∗

Ronald Chen, Thomas Hagstrom (2012)

ESAIM: Mathematical Modelling and Numerical Analysis

We study order-adaptive implementations of Hermite methods for hyperbolic and singularly perturbed parabolic initial value problems. Exploiting the facts that Hermite methods allow the degree of the local polynomial representation to vary arbitrarily from cell to cell and that, for hyperbolic problems, each cell can be evolved independently over a time-step determined only by the cell size, a relatively straightforward method is proposed. Its utility is demonstrated on a number of model problems...

P-adaptive Hermite methods for initial value problems

Ronald Chen, Thomas Hagstrom (2012)

ESAIM: Mathematical Modelling and Numerical Analysis - Modélisation Mathématique et Analyse Numérique

We study order-adaptive implementations of Hermite methods for hyperbolic and singularly perturbed parabolic initial value problems. Exploiting the facts that Hermite methods allow the degree of the local polynomial representation to vary arbitrarily from cell to cell and that, for hyperbolic problems, each cell can be evolved independently over a time-step determined only by the cell size, a relatively straightforward method is proposed. Its utility is demonstrated on a number of model problems...

P-adaptive Hermite methods for initial value problems∗

Ronald Chen, Thomas Hagstrom (2012)

ESAIM: Mathematical Modelling and Numerical Analysis

We study order-adaptive implementations of Hermite methods for hyperbolic and singularly perturbed parabolic initial value problems. Exploiting the facts that Hermite methods allow the degree of the local polynomial representation to vary arbitrarily from cell to cell and that, for hyperbolic problems, each cell can be evolved independently over a time-step determined only by the cell size, a relatively straightforward method is proposed. Its utility is demonstrated on a number of model problems...

Pairs of successes in Bernoulli trials and a new n-estimator for the binomial distribution

Wolfgang Kühne, Peter Neumann, Dietrich Stoyan, Helmut Stoyan (1994)

Applicationes Mathematicae

The problem of estimating the number, n, of trials, given a sequence of k independent success counts obtained by replicating the n-trial experiment is reconsidered in this paper. In contrast to existing methods it is assumed here that more information than usual is available: not only the numbers of successes are given but also the number of pairs of consecutive successes. This assumption is realistic in a class of problems of spatial statistics. There typically k = 1, in which case the classical...

Parallel algorithm for spatially one-and two-dimensional initial-boundary-value problem for a parabolic equation

Pavol Purcz (2001)

Kybernetika

A generalization of the spatially one-dimensional parallel pipe-line algorithm for solution of the initial-boundary-value problem using explicit difference method to the two-dimensional case is presented. The suggested algorithm has been verified by implementation on a workstation-cluster running under PVM (Parallel Virtual Machine). Theoretical estimates of the speed-up are presented.

Parallel Computing for the study of the focusing Davey-Stewartson II equation in semiclassical limit*

Kristelle ROIDOT (2012)

ESAIM: Proceedings

The asymptotic description of the semiclassical limit of nonlinear Schrödinger equations is a major challenge with so far only scattered results in 1 + 1 dimensions. In this limit, solutions to the NLS equations can have zones of rapid modulated oscillations or blow up. We numerically study in this work the Davey-Stewartson system, a 2 + 1 dimensional nonlinear Schrödinger equation with a nonlocal term, by using parallel computing. This leads to the first results on the semiclassical limit for...

Parallel dynamic programming algorithms: Multitransputer systems

Jan Sadecki (2002)

International Journal of Applied Mathematics and Computer Science

The present paper discusses real parallel computations. On the basis of a selected group of dynamic programming algorithms, a number of factors affecting the efficiency of parallel computations such as, e.g., the way of distributing tasks, the interconnection structure between particular elements of the parallel system or the way of organizing of interprocessor communication are analyzed. Computations were implemented in the parallel multitransputer SUPER NODE 1000 system using from 5 to 50 transputers....

Parallel implementation of Wavelet-Galerkin method

Finěk, Václav, Šimůnková, Martina (2013)

Programs and Algorithms of Numerical Mathematics

We present here some details of our implementation of Wavelet-Galerkin method for Poisson equation in C language parallelized by POSIX threads library and show its performance in dimensions d { 3 , 4 , 5 } .

Currently displaying 1 – 20 of 279

Page 1 Next