Page 1

Displaying 1 – 9 of 9

Showing per page

Singular Perturbation Analysis of Travelling Waves for a Model in Phytopathology

J. B. Burie, A. Calonnec, A. Ducrot (2010)

Mathematical Modelling of Natural Phenomena

We investigate the structure of travelling waves for a model of a fungal disease propagating over a vineyard. This model is based on a set of ODEs of the SIR-type coupled with two reaction-diffusion equations describing the dispersal of the spores produced by the fungus inside and over the vineyard. An estimate of the biological parameters in the model suggests to use a singular perturbation analysis. It allows us to compute the speed and the profile of the travelling waves. The analytical results...

Solving Ratio-Dependent Predator-Prey System with Constant Effort Harvesting using Variational Iteration Method

Barari, A., Ghotbi, Abdoul R., Omidvar, M., Ganji, D. D. (2009)

Serdica Journal of Computing

Due to wide range of interest in use of bio-economic models to gain insight into the scientific management of renewable resources like fisheries and forestry,variational iteration method (VIM) is employed to approximate the solution of the ratio-dependent predator-prey system with constant effort prey harvesting.The results are compared with the results obtained by Adomian decomposition method and reveal that VIM is very effective and convenient for solving nonlinear differential equations.

Some tracks in air pollution modelling and simulation.

Bruno Sportisse, Jaouad Boutahar, Edouard Debry, Denis Quélo, Karine Sartelet (2002)

RACSAM

In this article we discuss some issues related to Air Pollution modelling (as viewed by the authors): subgrid parametrization, multiphase modelling, reduction of high dimensional models and data assimilation. Numerical applications are given with POLAIR, a 3D numerical platform devoted to modelling of atmospheric trace species.

Spatiotemporal Dynamics in a Spatial Plankton System

R. K. Upadhyay, W. Wang, N. K. Thakur (2010)

Mathematical Modelling of Natural Phenomena

In this paper, we investigate the complex dynamics of a spatial plankton-fish system with Holling type III functional responses. We have carried out the analytical study for both one and two dimensional system in details and found out a condition for diffusive instability of a locally stable equilibrium. Furthermore, we present a theoretical analysis of processes of pattern formation that involves organism distribution and their interaction of spatially...

Stability of the Endemic Coexistence Equilibrium for One Host and Two Parasites

T. Dhirasakdanon, H. R. Thieme (2010)

Mathematical Modelling of Natural Phenomena

For an SI type endemic model with one host and two parasite strains, we study the stability of the endemic coexistence equilibrium, where the host and both parasite strains are present. Our model, which is a system of three ordinary differential equations, assumes complete cross-protection between the parasite strains and reduced fertility and increased mortality of infected hosts. It also assumes that one parasite strain is exclusively vertically...

Stochastic Lagrangian method for downscaling problems in computational fluid dynamics

Frédéric Bernardin, Mireille Bossy, Claire Chauvin, Jean-François Jabir, Antoine Rousseau (2010)

ESAIM: Mathematical Modelling and Numerical Analysis

This work aims at introducing modelling, theoretical and numerical studies related to a new downscaling technique applied to computational fluid dynamics. Our method consists in building a local model, forced by large scale information computed thanks to a classical numerical weather predictor. The local model, compatible with the Navier-Stokes equations, is used for the small scale computation (downscaling) of the considered fluid. It is inspired by Pope's works on turbulence, and consists in...

Currently displaying 1 – 9 of 9

Page 1