Loading [MathJax]/extensions/MathZoom.js
The knowledge of causal relations provides a possibility to perform predictions and helps to decide about the most reasonable actions aiming at the desired objectives. Although the causal reasoning appears to be natural for the human thinking, most of the traditional statistical methods fail to address this issue. One of the well-known methodologies correctly representing the relations of cause and effect is Pearl's causality approach. The paper brings an alternative, purely algebraic methodology...
In this work, we provide non-asymptotic bounds for the average speed of convergence of the empirical measure in the law of large numbers, in Wasserstein distance. We also consider occupation measures of ergodic Markov chains. One motivation is the approximation of a probability measure by finitely supported measures (the quantization problem). It is found that rates for empirical or occupation measures match or are close to previously known optimal quantization rates in several cases. This is notably...
We consider the problem of providing optimal uncertainty quantification (UQ) – and hence rigorous certification – for partially-observed functions. We present a UQ framework within which the observations may be small or large in number, and need not carry information about the probability distribution of the system in operation. The UQ objectives are posed as optimization problems, the solutions of which are optimal bounds on the quantities of interest; we consider two typical settings, namely parameter...
Currently displaying 1 –
3 of
3