Page 1

Displaying 1 – 5 of 5

Showing per page

Difference operators from interpolating moving least squares and their deviation from optimality

Thomas Sonar (2005)

ESAIM: Mathematical Modelling and Numerical Analysis - Modélisation Mathématique et Analyse Numérique

We consider the classical Interpolating Moving Least Squares (IMLS) interpolant as defined by Lancaster and Šalkauskas [Math. Comp. 37 (1981) 141–158] and compute the first and second derivative of this interpolant at the nodes of a given grid with the help of a basic lemma on Shepard interpolants. We compare the difference formulae with those defining optimal finite difference methods and discuss their deviation from optimality.

Difference operators from interpolating moving least squares and their deviation from optimality

Thomas Sonar (2010)

ESAIM: Mathematical Modelling and Numerical Analysis

We consider the classical Interpolating Moving Least Squares (IMLS) interpolant as defined by Lancaster and Šalkauskas [Math. Comp.37 (1981) 141–158] and compute the first and second derivative of this interpolant at the nodes of a given grid with the help of a basic lemma on Shepard interpolants. We compare the difference formulae with those defining optimal finite difference methods and discuss their deviation from optimality.

Currently displaying 1 – 5 of 5

Page 1