Direct methods for matrix Sylvester and Lyapunov equations.
This paper is devoted to computational problems related to Markov chains (MC) on a finite state space. We present formulas and bounds for characteristics of MCs using directed forest expansions given by the Matrix Tree Theorem. These results are applied to analysis of direct methods for solving systems of linear equations, aggregation algorithms for nearly completely decomposable MCs and the Markov chain Monte Carlo procedures.
Discrete-time symmetric polynomial equations with complex coefficients are studied in the scalar and matrix case. New theoretical results are derived and several algorithms are proposed and evaluated. Polynomial reduction algorithms are first described to study theoretical properties of the equations. Sylvester matrix algorithms are then developed to solve numerically the equations. The algorithms are implemented in the Polynomial Toolbox for Matlab.
We present a parallel solution algorithm for the transient heat equation in one and two spatial dimensions. The problem is discretized in space by the lowest-order conforming finite element method. Further, a one-step time integration scheme is used for the numerical solution of the arising system of ordinary differential equations. For the latter, the parareal method decomposing the time interval into subintervals is employed. It leads to parallel solution of smaller time-dependent problems. At...
A version of the dynamical systems method (DSM) for solving ill-conditioned linear algebraic systems is studied. An a priori and an a posteriori stopping rules are justified. An iterative scheme is constructed for solving ill-conditioned linear algebraic systems.
The present article is a continuation of previous papers by the same authors devoted to the efficiency of crop rotation experiments. We focus on plans distinguished by the cyclical pattern of the incidence matrix. For practical reasons, we slightly modify the efficiency coefficient. The relation between the resulting efficiency coefficients is examined. In addition, we provide a background material on crop rotation experiments.
The problem of efficient computing of the affine vector operations (addition of two vectors and multiplication of a vector by a scalar over GF (q)), and also the weight of a given vector, is important for many problems in coding theory, cryptography, VLSI technology etc. In this paper we propose a new way of representing vectors over GF (3) and GF (4) and we describe an efficient performance of these affine operations. Computing weights of binary vectors is also discussed.