Displaying 361 – 380 of 644

Showing per page

On numerical integration of implicit ordinary differential equations

Zdzisław Jackiewicz, Marian Kwapisz (1981)

Aplikace matematiky

In this paper it is shown how the numerical methods for ordinary differential equations can be adapted to implicit ordinary differential equations. The resulting methods are of the same order as the corresponding methods for ordinary differential equations. The convergence theorem is proved and some numerical examples are given.

On strongly stable approximations.

F. Arandiga, V. Caselles (1994)

Revista Matemática de la Universidad Complutense de Madrid

In this paper we prove that the convergence of (T - Tn)Tn-k to zero in operator norm (plus some technical conditions) is a sufficient condition for Tn to be a strongly stable approximation to T, thus extending some previous results existing in the literature.

On the convergence and application of Stirling's method

Ioannis K. Argyros (2003)

Applicationes Mathematicae

We provide new sufficient convergence conditions for the local and semilocal convergence of Stirling's method to a locally unique solution of a nonlinear operator equation in a Banach space setting. In contrast to earlier results we do not make use of the basic restrictive assumption in [8] that the norm of the Fréchet derivative of the operator involved is strictly bounded above by 1. The study concludes with a numerical example where our results compare favorably with earlier ones.

Currently displaying 361 – 380 of 644