Displaying 501 – 520 of 644

Showing per page

Structural Properties of Solutions to Total Variation Regularization Problems

Wolfgang Ring (2010)

ESAIM: Mathematical Modelling and Numerical Analysis

In dimension one it is proved that the solution to a total variation-regularized least-squares problem is always a function which is "constant almost everywhere" , provided that the data are in a certain sense outside the range of the operator to be inverted. A similar, but weaker result is derived in dimension two.

Sur une méthode itérative de résolution de problèmes aux limites elliptiques non linéaires

Moïse Sibony (1977)

Aplikace matematiky

Soit A un opérateur non nécessairement linéaire d’un Hilbert de l’équation A u = f , pour f donné dans ' . Nous étudions la convergence du schéma itératif suivant: u n + 1 = u n - ρ B - 1 ( A u n - f ) aou B est fonction d’un opérateur auto-adjoint S choisi de telle sorte que l’inversion de B soit immédiate numériquement. Par exemple B = [ I - ( I - ρ 0 S ) m ] - 1 S avec un entier m et une constante ρ 0 convenablement choisis. Nous appliquons les résultats à un problème aux limites non linéaires avec résultats numériques.

Currently displaying 501 – 520 of 644