Strong convergence theorem by a new hybrid method for equilibrium problems and relatively nonexpansive mappings.
In dimension one it is proved that the solution to a total variation-regularized least-squares problem is always a function which is "constant almost everywhere" , provided that the data are in a certain sense outside the range of the operator to be inverted. A similar, but weaker result is derived in dimension two.
Soit un opérateur non nécessairement linéaire d’un Hilbert de l’équation , pour donné dans . Nous étudions la convergence du schéma itératif suivant: aou est fonction d’un opérateur auto-adjoint choisi de telle sorte que l’inversion de soit immédiate numériquement. Par exemple avec un entier et une constante convenablement choisis. Nous appliquons les résultats à un problème aux limites non linéaires avec résultats numériques.