Page 1

Displaying 1 – 16 of 16

Showing per page

Nonlinear conjugate gradient methods

Lukšan, Ladislav, Vlček, Jan (2015)

Programs and Algorithms of Numerical Mathematics

Modifications of nonlinear conjugate gradient method are described and tested.

Nonlinear Rescaling Method and Self-concordant Functions

Richard Andrášik (2013)

Acta Universitatis Palackianae Olomucensis. Facultas Rerum Naturalium. Mathematica

Nonlinear rescaling is a tool for solving large-scale nonlinear programming problems. The primal-dual nonlinear rescaling method was used to solve two quadratic programming problems with quadratic constraints. Based on the performance of primal-dual nonlinear rescaling method on testing problems, the conclusions about setting up the parameters are made. Next, the connection between nonlinear rescaling methods and self-concordant functions is discussed and modified logarithmic barrier function is...

Nonmonotone strategy for minimization of quadratics with simple constraints

M. A. Diniz-Ehrhardt, Zdeněk Dostál, M. A. Gomes-Ruggiero, J. M. Martínez, Sandra Augusta Santos (2001)

Applications of Mathematics

An algorithm for quadratic minimization with simple bounds is introduced, combining, as many well-known methods do, active set strategies and projection steps. The novelty is that here the criterion for acceptance of a projected trial point is weaker than the usual ones, which are based on monotone decrease of the objective function. It is proved that convergence follows as in the monotone case. Numerical experiments with bound-constrained quadratic problems from CUTE collection show that the modified...

Non-monotoneous parallel iteration for solving convex feasibility problems

Gilbert Crombez (2003)

Kybernetika

The method of projections onto convex sets to find a point in the intersection of a finite number of closed convex sets in an Euclidean space, sometimes leads to slow convergence of the constructed sequence. Such slow convergence depends both on the choice of the starting point and on the monotoneous behaviour of the usual algorithms. As there is normally no indication of how to choose the starting point in order to avoid slow convergence, we present in this paper a non-monotoneous parallel algorithm...

Numerical behavior of the method of projection onto an acute cone with level control in convex minimization

Robert Dylewski (2000)

Discussiones Mathematicae, Differential Inclusions, Control and Optimization

We present the numerical behavior of a projection method for convex minimization problems which was studied by Cegielski [1]. The method is a modification of the Polyak subgradient projection method [6] and of variable target value subgradient method of Kim, Ahn and Cho [2]. In each iteration of the method an obtuse cone is constructed. The obtuse cone is generated by a linearly independent system of subgradients. The next approximation of a solution is the projection onto a translated acute cone...

Currently displaying 1 – 16 of 16

Page 1