Previous Page 2

Displaying 21 – 33 of 33

Showing per page

Discrete smoothing splines and digital filtration. Theory and applications

Jiří Hřebíček, František Šik, Vítězslav Veselý (1990)

Aplikace matematiky

Two universally applicable smoothing operations adjustable to meet the specific properties of the given smoothing problem are widely used: 1. Smoothing splines and 2. Smoothing digital convolution filters. The first operation is related to the data vector r = ( r 0 , . . . , r n - 1 ) T with respect to the operations 𝒜 , and to the smoothing parameter α . The resulting function is denoted by σ α ( t ) . The measured sample r is defined on an equally spaced mesh Δ = { t i = i h } i = 0 n - 1 ...

Distancias elipsoidales y puntos eficientes. Un método interactivo.

María Teresa Ramos Domínguez, Miguel Sánchez García, Carlos González Martín (1988)

Trabajos de Investigación Operativa

En este trabajo se estudian las propiedades que relacionan las distancias elipsoidales con la generación de puntos eficientes de un problema de programación multiobjetivo. Basándonos en estas propiedades, hemos construido un algoritmo interactivo convergente.

Distributed optimization with inexact oracle

Kui Zhu, Yichen Zhang, Yutao Tang (2022)

Kybernetika

In this paper, we study the distributed optimization problem using approximate first-order information. We suppose the agent can repeatedly call an inexact first-order oracle of each individual objective function and exchange information with its time-varying neighbors. We revisit the distributed subgradient method in this circumstance and show its suboptimality under square summable but not summable step sizes. We also present several conditions on the inexactness of the local oracles to ensure...

Domain optimization in 3 D -axisymmetric elliptic problems by dual finite element method

Ivan Hlaváček (1990)

Aplikace matematiky

An axisymmetric second order elliptic problem with mixed boundary conditions is considered. The shape of the domain has to be found so as to minimize a cost functional, which is given in terms of the cogradient of the solution. A new dual finite element method is used for approximate solutions. The existence of an optimal domain is proven and a convergence analysis presented.

Domain optimization in axisymmetric elliptic boundary value problems by finite elements

Ivan Hlaváček (1988)

Aplikace matematiky

An axisymmetric second order elliptic problem with mixed boundary conditions is considered. A part of the boundary has to be found so as to minimize one of four types of cost functionals. The existence of an optimal boundary is proven and a convergence analysis for piecewise linear approximate solutions presented, using weighted Sobolev spaces.

Dual finite element analysis for elliptic problems with obstacles on the boundary. I

Ivan Hlaváček (1977)

Aplikace matematiky

For an elliptic model problem with non-homogeneous unilateral boundary conditions, two dual variational formulations are presented and justified on the basis of a saddle point theorem. Using piecewise linear finite element models on the triangulation of the given domain, dual numerical procedures are proposed. By means of one-sided approximations, some a priori error estimates are proved, assuming that the solution is sufficiently smooth. A posteriori error estimates and two-sided bounds for the...

Dual method for solving a special problem of quadratic programming as a subproblem at nonlinear minimax approximation

Ladislav Lukšan (1986)

Aplikace matematiky

The paper describes the dual method for solving a special problem of quadratic programming as a subproblem at nonlinear minimax approximation. Two cases are analyzed in detail, differring in linear dependence of gradients of the active functions. The complete algorithm of the dual method is presented and its finite step convergence is proved.

Dual-weighted goal-oriented adaptive finite elements for optimal control of elliptic variational inequalities

M. Hintermüller, R. H. W. Hoppe, C. Löbhard (2014)

ESAIM: Control, Optimisation and Calculus of Variations

A dual-weighted residual approach for goal-oriented adaptive finite elements for a class of optimal control problems for elliptic variational inequalities is studied. The development is based on the concept of C-stationarity. The overall error representation depends on primal residuals weighted by approximate dual quantities and vice versa as well as various complementarity mismatch errors. Also, a priori bounds for C-stationary points and associated multipliers are derived. Details on the numerical...

Currently displaying 21 – 33 of 33

Previous Page 2