Previous Page 2

Displaying 21 – 28 of 28

Showing per page

Projection method with level control in convex minimization

Robert Dylewski (2010)

Discussiones Mathematicae, Differential Inclusions, Control and Optimization

We study a projection method with level control for nonsmoooth convex minimization problems. We introduce a changeable level parameter to level control. The level estimates the minimal value of the objective function and is updated in each iteration. We analyse the convergence and estimate the efficiency of this method.

Proper orthogonal decomposition for optimality systems

Karl Kunisch, Stefan Volkwein (2008)

ESAIM: Mathematical Modelling and Numerical Analysis

Proper orthogonal decomposition (POD) is a powerful technique for model reduction of non-linear systems. It is based on a Galerkin type discretization with basis elements created from the dynamical system itself. In the context of optimal control this approach may suffer from the fact that the basis elements are computed from a reference trajectory containing features which are quite different from those of the optimally controlled trajectory. A method is proposed which avoids this problem of unmodelled...

Properties of projection and penalty methods for discretized elliptic control problems

Andrzej Cegielski, Christian Grossmann (2007)

Discussiones Mathematicae, Differential Inclusions, Control and Optimization

In this paper, properties of projection and penalty methods are studied in connection with control problems and their discretizations. In particular, the convergence of an interior-exterior penalty method applied to simple state constraints as well as the contraction behavior of projection mappings are analyzed. In this study, the focus is on the application of these methods to discretized control problem.

Prox-regularization and solution of ill-posed elliptic variational inequalities

Alexander Kaplan, Rainer Tichatschke (1997)

Applications of Mathematics

In this paper new methods for solving elliptic variational inequalities with weakly coercive operators are considered. The use of the iterative prox-regularization coupled with a successive discretization of the variational inequality by means of a finite element method ensures well-posedness of the auxiliary problems and strong convergence of their approximate solutions to a solution of the original problem. In particular, regularization on the kernel of the differential operator and regularization...

Currently displaying 21 – 28 of 28

Previous Page 2