Parallel and superfast algorithms for Hankel systems of equations.
This paper is devoted to the numerical solution of stationary laminar Bingham fluids by path-following methods. By using duality theory, a system that characterizes the solution of the original problem is derived. Since this system is ill-posed, a family of regularized problems is obtained and the convergence of the regularized solutions to the original one is proved. For the update of the regularization parameter, a path-following method is investigated. Based on the differentiability properties...
This paper is devoted to the numerical solution of stationary laminar Bingham fluids by path-following methods. By using duality theory, a system that characterizes the solution of the original problem is derived. Since this system is ill-posed, a family of regularized problems is obtained and the convergence of the regularized solutions to the original one is proved. For the update of the regularization parameter, a path-following method is investigated. Based on the differentiability properties...
Penalty methods, augmented Lagrangian methods and Nitsche mortaring are well known numerical methods among the specialists in the related areas optimization and finite elements, respectively, but common aspects are rarely available. The aim of the present paper is to describe these methods from a unifying optimization perspective and to highlight some common features of them.
In the present paper rather general penalty/barrier path-following methods (e.g. with p-th power penalties, logarithmic barriers, SUMT, exponential penalties) applied to linearly constrained convex optimization problems are studied. In particular, unlike in previous studies [1,11], here simultaneously different types of penalty/barrier embeddings are included. Together with the assumed 2nd order sufficient optimality conditions this required a significant change in proving the local existence of...
This paper is concerned with the numerical approximation of mean curvature flow t → Ω(t) satisfying an additional inclusion-exclusion constraint Ω1 ⊂ Ω(t) ⊂ Ω2. Classical phase field model to approximate these evolving interfaces consists in solving the Allen-Cahn equation with Dirichlet boundary conditions. In this work, we introduce a new phase field model, which can be viewed as an Allen Cahn equation with a penalized double well potential. We first justify this method by a Γ-convergence result...
This paper is concerned with the numerical approximation of mean curvature flow t → Ω(t) satisfying an additional inclusion-exclusion constraint Ω1 ⊂ Ω(t) ⊂ Ω2. Classical phase field model to approximate these evolving interfaces consists in solving the Allen-Cahn equation with Dirichlet boundary conditions. In this work, we introduce a new phase field model, which can be viewed as an Allen Cahn equation with a penalized double well potential. We first justify this method by a Γ-convergence result...
A method is presented for segmenting one-dimensional signal whose independent segments are modeled as polynomials, and which is corrupted by additive noise. The method is based on sparse modeling, the main part is formulated as a convex optimization problem and is solved by a proximal splitting algorithm. We perform experiments on simulated and real data and show that the method is capable of reliably finding breakpoints in the signal, but requires careful tuning of the regularization parameters...
In this paper, we propose a primal interior-point method for large sparse minimax optimization. After a short introduction, the complete algorithm is introduced and important implementation details are given. We prove that this algorithm is globally convergent under standard mild assumptions. Thus the large sparse nonconvex minimax optimization problems can be solved successfully. The results of extensive computational experiments given in this paper confirm efficiency and robustness of the proposed...