An active set strategy based on the augmented lagrangian formulation for image restoration
Lagrangian and augmented Lagrangian methods for nondifferentiable optimization problems that arise from the total bounded variation formulation of image restoration problems are analyzed. Conditional convergence of the Uzawa algorithm and unconditional convergence of the first order augmented Lagrangian schemes are discussed. A Newton type method based on an active set strategy defined by means of the dual variables is developed and analyzed. Numerical examples for blocky signals and images perturbed by...
The minimization of nonconvex functionals naturally arises in materials sciences where deformation gradients in certain alloys exhibit microstructures. For example, minimizing sequences of the nonconvex Ericksen-James energy can be associated with deformations in martensitic materials that are observed in experiments[2,3]. — From the numerical point of view, classical conforming and nonconforming finite element discretizations have been observed to give minimizers with their quality being highly dependent...
In telecommunications network design, one of the most frequent problems is to adjust the capacity on the links of the network in order to satisfy a set of requirements. In the past, these requirements were demands based on historical data and/or demographic predictions. Nowadays, because of new technology development and customer movement due to competitiveness, the demands present considerable variability. Thus, network robustness w.r.t demand uncertainty is now regarded as a major consideration....
The paper presents an approach to improve the efficiency of some two-level optimization algorithms by their implementation in parallel MIMD multiprocessor systems. Diagonal decomposition dynamic programming and parametric optimization methods are considered, and some concepts of their parallelization are discussed. Results regarding the implementation of computations in a parallel multitransputer system are presented. For the analysed problems, the obtained values of speedup are close to the theoretical...
We prove a result for the existence and uniqueness of the solution for a class of mildly nonlinear complementarity problem in a uniformly convex and strongly smooth Banach space equipped with a semi-inner product. We also get an extension of a nonlinear complementarity problem over an infinite dimensional space. Our last results deal with the existence of a solution of mildly nonlinear complementarity problem in a reflexive Banach space.