A procedure for the solution of the equations of motion by the finite element method
In order to save CPU-time in solving large systems of equations in function spaces we decompose the large system in subsystems and solve the subsystems by an appropriate method. We give a sufficient condition for the convergence of the corresponding procedure and apply the approach to differential algebraic systems.
An alternative approach for the analysis and the numerical approximation of ODEs, using a variational framework, is presented. It is based on the natural and elementary idea of minimizing the residual of the differential equation measured in a usual Lp norm. Typical existence results for Cauchy problems can thus be recovered, and finer sets of assumptions for existence are made explicit. We treat, in particular, the cases of an explicit ODE and a differential inclusion. This approach also allows...
In many applications, there is a need to choose mathematical models that depend on non-smooth functions. The task of simulation becomes especially difficult if such functions appear on the right-hand side of an initial value problem. Moreover, solution processes from usual numerics are sensitive to roundoff errors so that verified analysis might be more useful if a guarantee of correctness is required or if the system model is influenced by uncertainty. In this paper, we provide a short overview...
In this paper, a class of A()-stable linear multistep formulas for stiff initial value problems (IVPs) in ordinary differential equations (ODEs) is developed. The boundary locus of the methods shows that the schemes are A-stable for step number and stiffly stable for and . Some numerical results are reported to illustrate the method.