Discretization of Multiparameter Eigenvalue Problems
In an earlier paper [5] a method for eigenvalue inclussion using a Gerschgorin type theory originating from Donnelly [2] was applied to the plane Orr-Sommerfeld problem in the case of a pure Poiseuile flow. In this paper the same method will be used to deal Poiseuile and Couette flow. Potter [6] has treated this case before with an approximative method.
A new method for computation of eigenvalues of the radial Schrödinger operator is presented. The potential is assumed to behave as if and as if . The Schrödinger equation is transformed to a non-linear differential equation of the first order for a function . It is shown that the eigenvalues are the discontinuity points of the function . Moreover, it is shown how to obtain an arbitrarily accurate approximation of eigenvalues. The method seems to be much more economical in comparison...
In this article, we show the convergence of a class of numerical schemes for certain maximal monotone evolution systems; a by-product of this results is the existence of solutions in cases which had not been previously treated. The order of these schemes is in general and when the only non Lipschitz continuous term is the subdifferential of the indicatrix of a closed convex set. In the case of Prandtl’s rheological model, our estimates in maximum norm do not depend on spatial dimension.
In this article, we show the convergence of a class of numerical schemes for certain maximal monotone evolution systems; a by-product of this results is the existence of solutions in cases which had not been previously treated. The order of these schemes is 1/2 in general and 1 when the only non Lipschitz continuous term is the subdifferential of the indicatrix of a closed convex set. In the case of Prandtl's rheological model, our estimates in maximum norm do not depend on spatial dimension. ...
The method proposed here has been devised for solution of the spectral problem for the Lamé wave equation (see [2]), but extended lately to more general problems. This method is based on the phase function concept or the Prüfer angle determined by the Prüfer transformation cotθ(x) = y'(x)/y(x), where y(x) is a solution of a second order self-adjoint o.d.e. The Prüfer angle θ(x) has some useful properties very often being referred to in theoretical research concerning both single- and multi-parameter...