Page 1 Next

Displaying 1 – 20 of 21

Showing per page

Some applications of the Pascal matrix to the study of numerical methods for differential equations

Lidia Aceto (2005)

Bollettino dell'Unione Matematica Italiana

In this paper we introduce and analyze some relations between the Pascal matrix and a new class of numerical methods for differential equations obtained generalizing the Adams methods. In particular, we shall prove that these methods are suitable for solving stiff problems since their absolute stability regions contain the negative half complex plane.

Symplectic local time-stepping in non-dissipative DGTD methods applied to wave propagation problems

Serge Piperno (2006)

ESAIM: Mathematical Modelling and Numerical Analysis - Modélisation Mathématique et Analyse Numérique

The Discontinuous Galerkin Time Domain (DGTD) methods are now popular for the solution of wave propagation problems. Able to deal with unstructured, possibly locally-refined meshes, they handle easily complex geometries and remain fully explicit with easy parallelization and extension to high orders of accuracy. Non-dissipative versions exist, where some discrete electromagnetic energy is exactly conserved. However, the stability limit of the methods, related to the smallest elements in the mesh,...

Currently displaying 1 – 20 of 21

Page 1 Next